[1] 金雨玲, 李林丽, 刘亚靖, 等. 高活性Co3O4/Fe3O4复合纳米材料的制备及其热催化性能研究[J]. 功能材料, 2023, 54(8): 8157-8162+8171. JIN Y L, LI L L, LIU Y J, et al. Preparation andthermocatalytic properties of highly active Co3O4/Fe3O4 composite nanomaterials[J]. Journal of Functional Materials, 2023, 54(8): 8157-8162+8171 (in Chinese). [2] 冯淑鑫, 冯 姗, 石鸿定, 等. 四氧化三钴光催化剂的研究进展[J]. 化工管理, 2023(1): 94-96+112. FENG S X, FENG S, SHI H D, et al. Research progress of cobalt trioxide photocatalyst[J]. Chemical Enterprise Management, 2023(1): 94-96+112 (in Chinese). [3] ABU-MELHA S. Remarkable effect of single-doped and double-doped nano Co3O4 on the photodegradation of dianix blue dye[J]. Journal of Cluster Science, 2024, 35(2): 405-417. [4] 张政煜. Co基非均相催化剂活化PMS去除有机污染物的进展[J]. 广州化学, 2022, 47(5): 9-17. ZHANG Z Y. Progress of activation peroxymonosulfate by cobalt-based heterogeneous for removal of organic pollutants[J]. Guangzhou Chemistry, 2022, 47(5): 9-17 (in Chinese). [5] WU T T, DAI G L, XU J J, et al. Structural design of organic battery electrode materials: from DFT to artificial intelligence[J]. Rare Metals, 2023, 42(10): 3269-3303. [6] PARK B, HAN M, PARK J, et al. A photoacoustic finder fully integrated with a solid-state dye laser and transparent ultrasound transducer[J]. Photoacoustics, 2021, 23: 100290. [7] WU H Z, FU S F, WANG S H, et al. Electrical current visualization sensor based on magneto-electrochromic effect[J]. Nano Energy, 2022, 98: 107226. [8] WANG Z L, WEI Y B, YANG D S. Bioinspired nanochannel-assisted broadband absorber for solar energy harvesting[J]. Plasmonics, 2023, 18(6): 2177-2186. [9] KIM J H, LEE J S. Elaborately modified BiVO4 photoanodes for solar water splitting[J]. Advanced Materials, 2019, 31(20): e1806938. [10] JO W J, KANG H J, KONG K J, et al. Phase transition-induced band edge engineering of BiVO4 to split pure water under visible light[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(45): 13774-13778. [11] LONG M C, CAI W M, CAI J, et al. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation[J]. The Journal of Physical Chemistry B, 2006, 110(41): 20211-20216. [12] CHANG X X, WANG T, ZHANG P, et al. Enhanced surface reaction kinetics and charge separation of p-n heterojunction Co3O4/BiVO4 photoanodes[J]. Journal of the American Chemical Society, 2015, 137(26): 8356-8359. [13] WANG Y L, YU D, WANG W, et al. Synthesizing Co3O4-BiVO4/g-C3N4 heterojunction composites for superior photocatalytic redox activity[J]. Separation and Purification Technology, 2020, 239: 116562. [14] 李 蒋, 王 雁, 张秀芳, 等.Co3O4/BiVO4复合阳极活化过一硫酸盐强化光电催化降解双酚A[J]. 环境科学, 2018, 39(8): 3713-3718. LI J, WANG Y, ZHANG X F, et al. Enhancement of photoelectrocatalytic degradation of bisphenol A with peroxymonosulfate activated by a Co3O4/BiVO4 composite photoanode[J]. Environmental Science, 2018, 39(8): 3713-3718 (in Chinese). [15] LI J, WANG Y, ZHAO S, et al. Electrospun nanostructured Co3O4/BiVO4 composite films for photoelectrochemical applications[J]. Journal of Colloid and Interface Science, 2019, 539: 442-447. [16] HOU C C, LI T T, CHEN Y, et al. Improved photocurrents for water oxidation by using metal-organic framework derived hybrid porous Co3O4@carbon/BiVO4 as a photoanode[J]. ChemPlusChem, 2015, 80(9): 1465-1471. [17] SOBAHI T R, AMIN M S, MOHAMED R M. Photocatalytic degradation of methylene blue dye by F-doped Co3O4 nanowires[J]. Desalination and Water Treatment, 2017, 74: 346-353. [18] KIM J H, LEE J S. BiVO4-based heterostructured photocatalysts for solar water splitting: a review[J]. Energy and Environment Focus, 2014, 3(4): 339-353. [19] NI S M, GUO F Y, WANG D B, et al. Effect of MgO surface modification on the TiO2 nanowires electrode for self-powered UV photodetectors[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(6): 7265-7272. [20] WANG H, WANG H, LI L H, et al. Self-powered broadband photodetectors material based on Co3O4-ZnO heterojunction with bottlebrush nanostructure[J]. ACS Applied Electronic Materials, 2023, 5(6): 3224-3231. [21] OMNÈS F, MONROY E, MUÑOZ E, et al. Wide bandgap UV photodetectors: a short review of devices and applications[C]//SPIE Proceedings, Gallium Nitride Materials and Devices II. San Jose, CA. SPIE, 2007: 111-125. [22] HUI Q, LI Q K, WANG S, et al. Highly efficient flexible BiVO4 thin-film photodetector with good bending robustness on mica substrates[J]. The Journal of Physical Chemistry C, 2023, 127(36): 18219-18226. [23] HAN Z Y, DAI M J, ZENG Z C, et al. Highly stable and fast response photodetector based on double perovskite Cs2AgBiCl6 crystals[J]. Journal of Physics D Applied Physics, 2024, 57(21): 215102. [24] KATHIRVEL A, UMA MAHESWARI A, BATABYAL S K, et al. BiFeO3-thiourea/carbon heterostructure based self-powered white light photodetector[J]. Materials Letters, 2021, 284: 128906. [25] YIN Z H, ZENG Y, YANG D M, et al. Multifunctional optoelectronic device based on CuO/ZnO heterojunction structure[J]. Journal of Luminescence, 2023, 257: 119762. |