[1] WU T T, GAO X J, GE F Y, et al. Metal-organic frameworks (MOFs) as fluorescence sensors: principles, development and prospects[J]. CrystEngComm, 2022, 24(45): 7881-7901. [2] ZHANG X D, BI F K, ZHAO Z Y, et al. Boosting toluene oxidation by the regulation of Pd species on UiO-66: synergistic effect of Pd species[J]. Journal of Catalysis, 2022, 413: 59-75. [3] LI C, ZHANG H, LIU M, et al. Recent progress in metal-organic frameworks (MOFs) for electrocatalysis[J]. Industrial Chemistry & Materials, 2023, 1(1): 9-38. [4] XU Z M, HU Z Y, HUANG Y L, et al. Introducing frustrated lewis pairs to metal-organic framework for selective hydrogenation of N-heterocycles[J]. Journal of the American Chemical Society, 2023, 145(27): 14994-15000. [5] ZHANG D, XUE Z Z, PAN J E, et al. Solvated lanthanide cationic template strategy for constructing iodoargentates with photoluminescence and white light emission[J]. Crystal Growth & Design, 2018, 18(11): 7041-7047. [6] WANG Y, XING S H, BAI F Y, et al. Stable lanthanide-organic framework materials constructed by a triazolyl carboxylate ligand: multifunction detection and white luminescence tuning[J]. Inorganic Chemistry, 2018, 57(20): 12850-12859. [7] NIROSHA YALAMANDALA B, SHEN W T, MIN S H, et al. Advances in functional metal-organic frameworks based on-demand drug delivery systems for tumor therapeutics[J]. Advanced NanoBiomed Research, 2021, 1(8): 2100014. [8] REN D B, CHENG Y B, XU W X, et al. Copper-based metal-organic framework induces NO generation for synergistic tumor therapy and antimetastasis activity[J]. Small, 2023, 19(4): e2205772. [9] YU L A, ULLAH S, WANG H, et al. High-capacity splitting of mono- and dibranched hexane isomers by a robust zinc-based metal-organic framework[J]. Angewandte Chemie International Edition, 2022, 61(42): 11359. [10] XIONG X H, WEI Z W, WANG W, et al. Scalable and depurative zirconium metal-organic framework for deep flue-gas desulfurization and SO2 recovery[J]. Journal of the American Chemical Society, 2023, 145(26): 14354-14364. [11] SHEN R Q, QUAN Y F, ZHANG Z R, et al. Metal-organic framework as an efficient synergist for intumescent flame retardants against highly flammable polypropylene[J]. Industrial & Engineering Chemistry Research, 2022, 61(21): 7292-7302. [12] QUAN Y F, SHEN R Q, MA R, et al. Sustainable and efficient manufacturing of metal-organic framework-based polymer nanocomposites by reactive extrusion[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(22): 7216-7222. [13] JIE B R, LIN H D, ZHAI Y X, et al. Mechanism, design and application of fluorescent recognition based on metal organic frameworks in pollutant detection[J]. Chemical Engineering Journal, 2023, 454: 139931. [14] LIANG J L, CHEN Q N, ZHANG J X, et al. A novel triazene-based cadmium metal-organic framework as a selective fluorescent sensor for Hg2+[J]. Polyhedron, 2022, 224: 116014. [15] LI H Y, ZHAO S N, ZANG S Q, et al. Functional metal-organic frameworks as effective sensors of gases and volatile compounds[J]. Chemical Society Reviews, 2020, 49: 6364-6401. [16] PAMEI M L, PUZARI A. Luminescent transition metal-organic frameworks: an emerging sensor for detecting biologically essential metal ions[J]. Nano-Structures & Nano-Objects, 2019, 19: 100364. [17] GAO L L, GAO T, ZHANG Y J, et al. A bifunctional 3D porous Zn-MOF: fluorescence recognition of Fe3+ and adsorption of Congo red/methyl orange dyes in aqueous medium[J]. Dyes and Pigments, 2022, 197: 109945. [18] ZHANG M L, ZHENG Y J, LIU M, et al. Two Cd(II)/Mn(II) coordination polymers showing dual responsive fluorescence sensing for Fe3+ and o-NAL[J]. Journal of Solid State Chemistry, 2019, 277: 693-700. [19] ZHONG X L, WANG J, SHI C C, et al. Photocatalytic applications of a new 3D Mn(II)-based MOF with mab topology[J]. Inorganica Chimica Acta, 2022, 540: 121063. [20] LIAO B L, LI S X. Multifunctional Mn(II) metal-organic framework for photocatalytic aerobic oxidation and CH direct trifluoromethylation[J]. Journal of Catalysis, 2022, 414: 294-301. [21] CAO W W, LI H Y, TIAN L. Exploring the synthese, structure, and properties of a 3D Mn-MOF based on 4, 6-bistriazole isophthalic acid[J]. Journal of Molecular Structure, 2024, 1295: 136721. [22] YANG D D, LIU X X, LU L P, et al. Effects of two different solvents on the syntheses, structural diversity, and magnetic properties of six Mn(ii) complexes derived from 3, 3'-((5-carboxy-1, 3-phenylene)bis(oxy)) dibenzoate and variable N-donor ligands[J]. CrystEngComm, 2020, 22(46): 8088-8099. [23] PRETTENCIA L, SOUNDARRAJAN E, AADHEESHWARAN S, et al. Solvothermal synthesis of Mn-based MOF materials: application in high energy density lithium ion battery[J]. Materials Letters, 2023, 351: 135052. [24] LI T, BAI Y L, WANG Y, et al. Advances in transition-metal (Zn, Mn, Cu)-based MOFs and their derivatives for anode of lithium-ion batteries[J]. Coordination Chemistry Reviews, 2020, 410: 213221. [25] ETAIW S E D H, MARIE H. Sonochemical nanostructure of Mn(II) supramolecular complex: X-ray structure, sensing and photocatalytic properties[J]. Sensors and Actuators B: Chemical, 2019, 290: 631-639. [26] NI J L, SHAO J J, LIANG Y, et al. Luminescent Mn-based metal-organic framework as an unusual detector to OH- and a multi-responsive sensor for Fe3+, Cr2O2-7 and CrO2-4 in aqueous media[J]. Journal of Molecular Structure, 2022, 1257: 132485. [27] SHAO J J, NI J L, CHEN W M, et al. A Mn-based LMOF with an AIEgens ligand for selective detection of Fe3+, CrO2-4 and Cr2O2-7 ions in aqueous solution[J]. Journal of Solid State Chemistry, 2022, 314: 123374. [28] ZHU J L, ZHU P Z, MEI J H, et al. Proton conduction and luminescent sensing property of two newly constructed positional isomer-dependent redox-active Mn(II)-organic frameworks[J]. Polyhedron, 2021, 200: 115139. [29] LIU Q Q, ZHANG S H, YANG J, et al. A water-stable La-MOF with high fluorescence sensing and supercapacitive performances[J]. Analyst, 2019, 144(15): 4534-4544. [30] YE F, WU N, LI P, et al. A lysosome-targetable fluorescent probe for imaging trivalent cations Fe3+, Al3+ and Cr3+ in living cells[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 222: 117242. [31] LIU J M, REN Y B, XU H Y, et al. Construction of a stable Zn(II)-MOF based on mixed ligand strategy for fluorescence detection of antibiotics and Fe3+ ions[J]. Inorganica Chimica Acta, 2021, 527: 120583. [32] ZHAO Y F, ZENG H, ZHU X W, et al. Metal-organic frameworks as photoluminescent biosensing platforms: mechanisms and applications[J]. Chemical Society Reviews, 2021, 50(7): 4484-4513. [33] MURRAY J S, POLITZER P. The electrostatic potential: an overview[J]. Computational Molecular Science, 2011, 1(2): 153-163. [34] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09, Revision A.1, Gaussian[M]. Inc. Wallingford, 2009. [35] ADAMO C, BARONE V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models[J]. The Journal of Chemical Physics, 1998, 108(2): 664-675. [36] MANZETTI S, LU T A. The geometry and electronic structure of aristolochic acid: possible implications for a frozen resonance[J]. Journal of Physical Organic Chemistry, 2013, 26(6): 473-483. [37] LU T A, CHEN F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. [38] LU T, CHEN F W. Quantitative analysis of molecular surface based on improved marching tetrahedra algorithm[J]. Journal of Molecular Graphics and Modelling, 2012, 38: 314-323. [39] LU T, MANZETTI S. Wavefunction and reactivity study of benzo[a]pyrene diol epoxide and its enantiomeric forms[J]. Structural Chemistry, 2014, 25(5): 1521-1533. [40] ZHANG J, LU T. Efficient evaluation of electrostatic potential with computerized optimized code[J]. Physical Chemistry Chemical Physics, 2021, 23(36): 20323-20328. [41] HUMPHREY W, DALKE A, SCHULTEN K. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38. [42] DONG Z Y, ZHANG N, WEI X N, et al. Facile fabrication formyl-tagged Zr-MOF and functionalized for Fe3+ fluorescence detection[J]. Materials Letters, 2022, 317: 132117. [43] MA J J, LIU W S. Effective luminescence sensing of Fe3+, Cr2O2-7, MnO-4 and 4-nitrophenol by lanthanide metal-organic frameworks with a new topology type[J]. Dalton Transactions, 2019, 48(32): 12287-12295. |