JOURNAL OF SYNTHETIC CRYSTALS ›› 2024, Vol. 53 ›› Issue (3): 410-425.
• Special Issue on Lithium Niobate Integrated Photonics • Previous Articles Next Articles
XIE Hanrong1, YANG Tiefeng1, WEI Yuming1, GUAN Heyuan1, LU Huihui1,2
Received:
2024-01-08
Published:
2024-04-02
CLC Number:
XIE Hanrong, YANG Tiefeng, WEI Yuming, GUAN Heyuan, LU Huihui. Recent Research Progress of Thin film Lithium Niobate Photodetector[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 410-425.
[1] MATTHIAS B T, REMEIKA J P. Ferroelectricity in the ilmenite structure[J]. Physical Review, 1949, 76(12): 1886-1887. [2] PETERSON G E, BALLMAN A A, LENZO P V, et al. Electro-optic properties of LiNbO3[J]. Applied Physics Letters, 1964, 5(3): 62-64. [3] SMITH R G, NASSAU K, GALVIN M F. Efficient continuous optical second-harmonic generation[J]. Applied Physics Letters, 1965, 7(10): 256-258. [4] NASSAU K, LEVINSTEIN H J, LOIACONO G M. Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching[J]. Journal of Physics and Chemistry of Solids, 1966, 27(6/7): 983-988. [5] NASSAU K, LEVINSTEIN H J, LOIACONO G M. Ferroelectric lithium niobate. 2. Preparation of single domain crystals[J]. Journal of Physics and Chemistry of Solids, 1966, 27(6/7): 989-996. [6] THIRUMAVALAVAN M, SITHARAMAN S, RAVI S, et al. Growth of large diameter lithium niobate single crystals by czochralski method[J]. Ferroelectrics, 1990, 102(1): 15-22. [7] POPESCU S T, PETRIS A, VLAD V I. Interferometric measurement of the pyroelectric coefficient in lithium niobate[J]. Journal of Applied Physics, 2013, 113(4): 043101-043104. [8] LEIDINGER M, FIEBERG S, WAASEM N, et al. Comparative study on three highly sensitive absorption measurement techniques characterizing lithium niobate over its entire transparent spectral range[J]. Optics Express, 2015, 23(17): 21690-21705. [9] SMOLENSKII G A, KRAINIK N N, KHUCHUA N P, et al. The curie temperature of LiNbO3[J]. Physica Status Solidi B Basic Research, 1966, 13(2): 309-314. [10] 杨金凤, 黄存新, 孙 军, 等. 铌酸锂晶体锂含量的精确测量研究[J]. 人工晶体学报, 2014, 43(4): 738-742. YANG J F, HUANG C X, SUN J, et al. Study on precise determination of lithium content in the LiNbO3 crystals[J]. Journal of Synthetic Crystals, 2014, 43(4): 738-742 (in Chinese). [11] WEIS R S, GAYLORD T K. Lithium niobate: summary of physical properties and crystal structure[J]. Applied Physics A, 1985, 37(4): 191-203. [12] ANDRUSHCHAK A S, CHERNYHIVSKY E M, GOTRA Z Y, et al. Spatial anisotropy of the acousto-optical efficiency in lithium niobate crystals[J]. Journal of Applied Physics, 2010, 108(10): 103118-103122. [13] JIN M W, CHEN J Y, SUA Y M, et al. Efficient electro-optical modulation on thin-film lithium niobate[J]. Optics Letters, 2021, 46(8): 1884-1887. [14] WANG C, ZHANG M, CHEN X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562: 101-104. [15] WANG C, ZHANG M, STERN B, et al. Nanophotonic lithium niobate electro-optic modulators[J]. Optics Express, 2018, 26(2): 1547-1555. [16] JIN M W, CHEN J Y, SUA Y M, et al. High-extinction electro-optic modulation on lithium niobate thin film[J]. Optics Letters, 2019, 44(5): 1265-1268. [17] BAZZAN M, SADA C. Optical waveguides in lithium niobate: recent developments and applications[J]. Applied Physics Reviews, 2015, 2(4): 040603. [18] 陈中舆, 程静欣, 陈怀熹, 等. 高性能Zn扩散掺镁LN晶体脊形波导器件的研究[J]. 人工晶体学报, 2022, 51(11): 1823-1829. CHEN Z Y, CHENG J X, CHEN H X, et al. High performance Zn diffused Mg doped LN crystal ridge waveguide devices[J]. Journal of Synthetic Crystals, 2022, 51(11): 1823-1829 (in Chinese). [19] HONARDOOST A, ABDELSALAM K, FATHPOUR S. Rejuvenating a versatile photonic material: thin-film lithium niobate[J]. Laser & Photonics Reviews, 2020, 14(9): 2000088. [20] BETTS R A, PITT C W. Growth of thin-film lithium niobate by molecular beam epitaxy[J]. Electronics Letters, 1985, 21(21): 960. [21] MYERS L E, BOSENBERG W R. Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators[J]. IEEE Journal of Quantum Electronics, 1997, 33(10): 1663-1672. [22] NIU Y R, YAN X, CHEN J X, et al. Research progress on periodically poled lithium niobate for nonlinear frequency conversion[J]. Infrared Physics & Technology, 2022, 125: 104243. [23] SHANDAROV S M, MANDEL A E, ANDRIANOVA A V, et al. Linear diffraction of light waves in periodically poled lithium niobate crystal[J]. Ferroelectrics, 2017, 508(1): 49-57. [24] ZHANG M, BUSCAINO B, WANG C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 2019, 568: 373-377. [25] XU M Y, HE M B, ZHU Y T, et al. Flat optical frequency comb generator based on integrated lithium niobate modulators[J]. Journal of Lightwave Technology, 2022, 40(2): 339-345. [26] WANG X H, JIA K P, CHEN M W, et al. 2 μm optical frequency comb generation via optical parametric oscillation from a lithium niobate optical superlattice box resonator[J]. Photonics Research, 2022, 10(2): 509-515. [27] WIDIYATMOKO B, IMAI K, KOUROGI M, et al. Second-harmonic generation of an optical frequency comb at 1.55 μm with periodically poled lithium niobate[J]. Optics Letters, 1999, 24(5): 315-317. [28] ZHU D, SHAO L B, YU M J, et al. Integrated photonics on thin-film lithium niobate[J]. Advances in Optics and Photonics, 2021, 13(2): 242-352. [29] QI Y F, LI Y. Integrated lithium niobate photonics[J]. Nanophotonics, 2020, 9(6): 1287-1320. [30] VAZIMALI M G, FATHPOUR S. Applications of thin-film lithium niobate in nonlinear integrated photonics[J]. Advanced Photonics, 2022, 4(3): 034001. [31] 田晓慧, 尚鸣昊, 祝世宁, 等. 铌酸锂基光量子器件与集成技术: 机遇与挑战[J]. 物理, 2023, 52(8): 534-541. TIAN X H, SHANG M H, ZHU S N, et al. Lithium niobate based photonic quantum devices and integration technology: opportunities and challenges[J]. Physics, 2023, 52(8): 534-541 (in Chinese). [32] 程 亚. 薄膜铌酸锂光电器件与超大规模光子集成[J]. 中国激光, 2024, 51(1): 0119002. CHENG Y. Thin-film lithium niobate optoelectronic devices and ultra-large-scale photonic integration[J]. Chinese Journal of Lasers, 2024, 51(1): 0119002 (in Chinese). [33] LIU H X, PAN B C, HUANG Y S, et al. Ultra-compact lithium niobate photonic chip for high-capacity and energy-efficient wavelength-division-multiplexing transmitters[J]. Light: Advanced Manufacturing, 2023, 4(2): 1. [34] ESIN A A, AKHMATKHANOV A R, SHUR V Y. The electronic conductivity in single crystals of lithium niobate and lithium tantalate family[J]. Ferroelectrics, 2016, 496(1): 102-109. [35] MANSINGH A, DHAR A. The AC conductivity and dielectric constant of lithium niobate single crystals[J]. Journal of Physics D Applied Physics, 1985, 18(10): 2059-2071. [36] 沈祥国, 徐 银, 董 越, 等. 基于嵌入填充层的薄膜铌酸锂-氮化硅电光调制器[J]. 光学学报, 2023, 43(14): 1413001. SHEN X G, XU Y, DONG Y, et al. Thin-film lithium niobate-silicon nitride electro-optic modulator based on embedded filling layer[J]. Acta Optica Sinica, 2023, 43(14): 1413001 (in Chinese). [37] 张双根, 姚江宏, 李勇男, 等. 飞秒激光刻写铌酸锂光波导的实验研究[J]. 光子学报, 2009, 38(1): 26-29. ZHANG S G, YAO J H, LI Y N, et al. Experimental research on congruent LiNbO3 waveguide fabricated by femtosecond laser pulses[J]. Acta Photonica Sinica, 2009, 38(1): 26-29 (in Chinese). [38] QIU W T, NDAO A, VILA V C, et al. Fano resonance-based highly sensitive, compact temperature sensor on thin film lithium niobate[J]. Optics Letters, 2016, 41(6): 1106-1109. [39] ABRAHAMS S C, MARSH P. Defect structure dependence on composition in lithium niobate[J]. Acta Crystallographica Section B Structural Science, 1986, 42(1): 61-68. [40] XUE D, KITAMURA K. Crystallographic structure and ferroelectric lithium niobate[J]. Transactions-Materials Research Society Of Japan, 2003, 28(4): 1191. [41] IYI N, KITAMURA K, IZUMI F, et al. Comparative study of defect structures in lithium niobate with different compositions[J]. Journal of Solid State Chemistry, 1992, 101(2): 340-352. [42] SAFARYAN F P, FEIGELSON R S, PETROSYAN A M. An approach to the defect structure analysis of lithium niobate single crystals[J]. Journal of Applied Physics, 1999, 85(12): 8079-8082. [43] LAURIA S, SALEH M F. Mixing second- and third-order nonlinear interactions in nanophotonic lithium-niobate waveguides[J]. Physical Review A, 2022, 105(4): 043511. [44] WEI D Z, WANG C W, WANG H J, et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal[J]. Nature Photonics, 2018, 12: 596-600. [45] 纪 磊, 于 建, 倪文俊, 等. 外加电场法制备周期极化铌酸锂的重要结构参数的数值分析[J]. 人工晶体学报, 2005, 34(5): 920-925. JI L, YU J, NI W J, et al. Numerical analysis of geometric parameters in periodic electric poled lithium niobate[J]. Journal of Synthetic Crystals, 2005, 34(5): 920-925 (in Chinese). [46] 陈海伟, 胡小鹏, 祝世宁. 光学超晶格:从体块到薄膜[J]. 人工晶体学报, 2022, 51(9-10): 1527-1534. CHEN H W, HU X P, ZHU S N. Optical superlattice: from bulk to thin film[J]. Journal of Synthetic Crystals, 2022, 51(9-10): 1527-1534. (in Chinese). [47] HU Y Z, HUANG Z J, ZENG X Z, et al. Resonant nonlinear nanostructured grating in an unstructured lithium niobate on insulator platform[J]. Optical Materials Express, 2023, 13(10): 2904. [48] HUANG Z J, LUO K W, FENG Z W, et al. Resonant enhancement of second harmonic generation in etchless thin film lithium niobate heteronanostructure[J]. Science China Physics, Mechanics & Astronomy, 2022, 65(10): 104211. [49] ROUSSEY M, BERNAL M P, COURJAL N, et al. Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons[J]. Applied Physics Letters, 2006, 89(24): 241110. [50] CHIRAKADZE A, MACHAVARIANI S, NATSVLISHVILI A, et al. Dispersion of the linear electro-optic effect in lithium niobate[J]. Journal of Physics D: Applied Physics, 1990, 23(9): 1216-1218. [51] SHANG J M, CHEN H J, SUI Z, et al. Electro-optic high-speed optical beam shifting based on a lithium niobate tapered waveguide[J]. Optics Express, 2022, 30(9): 14530-14537. [52] XU Y, ZHENG K P, SHANG J M, et al. Wavefront shaping for reconfigurable beam steering in lithium niobate multimode waveguide[J]. Optics Letters, 2022, 47(2): 329-332. [53] KOSOROTOV V F, KREMENCHUGSKIJ L S, LEVASH L V, et al. Tertiary pyroelectric effect in lithium niobate and lithium tantalate crystals[J]. Ferroelectrics, 1986, 70(1): 27-37. [54] KITAMURA K, HATANO H, TAKEKAWA S, et al. Large pyroelectric effect in Fe-doped lithium niobate induced by a high-power short-pulse laser[J]. Applied Physics Letters, 2010, 97(8): 082903. [55] BHOWMICK S, IODICE M, GIOFFRÈ M, et al. Investigation of pyroelectric fields generated by lithium niobate crystals through integrated microheaters[J]. Sensors and Actuators A: Physical, 2017, 261: 140-150. [56] YAMADA T, NIIZEKI N, TOYODA H. Piezoelectric and elastic properties of lithium niobate single crystals[J]. Japanese Journal of Applied Physics, 1967, 6(2): 151. [57] BOES A, CHANG L, LANGROCK C, et al. Lithium niobate photonics: unlocking the electromagnetic spectrum[J]. Science, 2023, 379(6627): eabj4396. [58] XU X D, GABOR N M, ALDEN J S, et al. Photo-thermoelectric effect at a graphene interface junction[J]. Nano Letters, 2010, 10(2): 562-566. [59] YUAN H T, LIU X G, AFSHINMANESH F, et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction[J]. Nature Nanotechnology, 2015, 10: 707-713. [60] YANG H, TAN C W, DENG C Y, et al. Bolometric effect in Bi2O2Se photodetectors[J]. Small, 2019, 15(43): 1904482. [61] XIE H R, YANG T F, XIE M Y, et al. Dual-crossbar configurated Bi2O2Se device for multiple optoelectronic applications[J]. Laser & Photonics Reviews, 2024: 2301129. [62] 胡思奇, 田睿娟, 甘雪涛. 面向硅基光电子混合集成的二维材料探测器[J]. 中国光学, 2021, 14(5): 1039-1055. HU S Q, TIAN R J, GAN X T. Two-dimensional material photodetector for hybrid silicon photonics[J]. Chinese Optics, 2021, 14(5): 1039-1055 (in Chinese). [63] LIANG X J, GUAN H Y, LUO K W, et al. Van der waals integrated LiNbO3/WS2 for high-performance UV-vis-NIR photodetection[J]. Laser & Photonics Reviews, 2023, 17(10): 2300286. [64] DONG H, RAN C X, GAO W Y, et al. Metal halide perovskite for next-generation optoelectronics: progresses and prospects[J]. eLight, 2023, 3(1): 3. [65] DESIATOV B, LONCˇAR M. Silicon photodetector for integrated lithium niobate photonics[J]. Applied Physics Letters, 2019, 115(12): 121108. [66] ZHANG X, LIU X Y, MA R, et al. Heterogeneously integrated III-V-on-lithium niobate broadband light sources and photodetectors[J]. Optics Letters, 2022, 47(17): 4564-4567. [67] GUO X W, SHAO L B, HE L Y, et al. High-performance modified uni-traveling carrier photodiode integrated on a thin-film lithium niobate platform[J]. Photonics Research, 2022, 10(6): 1338. [68] XUE Y, WU X X, CHEN K X, et al. Waveguide integrated high-speed black phosphorus photodetector on a thin film lithium niobate platform[J]. Optical Materials Express, 2023, 13(1): 272. [69] WANG S F, CHAPMAN R J, JOHNSON B C, et al. Integration of black phosphorus photoconductors with lithium niobate on insulator photonics[J]. Advanced Optical Materials, 2023, 11(2): 2201688. [70] ZHU S, ZHANG Y W, REN Y, et al. Waveguide-integrated two-dimensional material photodetectors in thin-film lithium niobate[J]. Advanced Photonics Research, 2023, 4(7): 2370015. [71] WEI C, YU Y R, WANG Z Y, et al. Ultra-wideband waveguide-coupled photodiodes on a thin-film lithium niobate platform[J]. Light: Advanced Manufacturing, 2023: 07861. [72] CHEN J M, LU S J, HU Y T, et al. Ultrasensitive bidirectional photoresponse SnSe2 photodetector integration with thin-film lithium niobate photonics[J]. Advanced Optical Materials, 2023: 2301543. [73] HUANG T J, MA C C. Characterization of response of ZnO/LiNbO3-based surface acoustic wave delay line photodetector[J]. Japanese Journal of Applied Physics, 2008, 47(8R): 6507. [74] BAEUMER C, SALDANA-GRECO D, MARTIREZ J M P, et al. Ferroelectrically driven spatial carrier density modulation in graphene[J]. Nature Communications, 2015, 6: 6136. [75] GOPALAN K K, JANNER D, NANOT S, et al. Mid-infrared pyroresistive graphene detector on LiNbO3[J]. Advanced Optical Materials, 2016: 1600723. [76] SASSI U, PARRET R, NANOT S, et al. Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance[J]. Nature Communications, 2017, 8: 14311. [77] SHIMATANI M, OGAWA S, FUKUSHIMA S, et al. Enhanced photogating via pyroelectric effect induced by insulator layer for high-responsivity long-wavelength infrared graphene-based photodetectors operating at room temperature[J]. Applied Physics Express, 2019, 12(2): 025001. [78] GUAN H Y, HONG J Y, WANG X L, et al. Broadband, high-sensitivity graphene photodetector based on ferroelectric polarization of lithium niobate[J]. Advanced Optical Materials, 2021, 9(16): 2100245. [79] ALWAZNY M S, ISMAIL R A, SALIM E T. High-quantum efficiency of Au@LiNbO3 core-shell nano composite as a photodetector by two-step laser ablation in liquid[J]. Applied Physics A, 2022, 128(6): 500. [80] SUN X L, SHENG Y, GAO X, et al. Self-powered lithium niobate thin-film photodetectors[J]. Small, 2022, 18(35): e2203532. [81] HE Z G, GUAN H Y, LIANG X J, et al. Broadband, polarization-sensitive, and self-powered high-performance photodetection of hetero-integrated MoS2 on lithium niobate[J]. Research, 2023, 6: 0199. [82] JIN C Y, WANG C X, QU L, et al. Fast lithium niobate photodetector[J]. Laser & Photonics Reviews, 2023, 17(12): 2300503. |
[1] | LIU Hongde, WANG Weiwei, ZHANG Zhongzheng, ZHENG Dahuai, LIU Shiguo, KONG Yongfa, XU Jingjun. Defect Structure of Lithium Niobate Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 355-371. |
[2] | LIN Jintian, GAO Renhong, GUAN Jianglin, LI Chuntao, YAO Ni, CHENG Ya. Advances in Low-Loss Thin-Film Lithium Niobate Photonic Integrated Devices [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 372-394. |
[3] | ZHANG Yuchen, LI Sanbing, XU Jingjun, ZHANG Guoquan. Conductive Domain Wall and Its Applications in Lithium Niobate [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 395-409. |
[4] | YE Zhilin, LI Shifeng, CUI Guoxin, YIN Zhijun, WANG Xuebin, ZHAO Gang, HU Xiaopeng, ZHU Shining. Fabrication and Characterization of Wafer-Scale Thin-Film Lithium Niobate Waveguides [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 426-433. |
[5] | SUN Dehui, HAN Wenbin, LI Chenzhe, PENG Liguo, LIU Hong. Growth of 8-Inch Lithium Niobate Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 434-440. |
[6] | HE Yuxuan, WU Jiangwei, CHEN Yuping, CHEN Xianfeng. Study on Fabrication of Erbium-Doped Lithium Niobate Thin Film Based on Low Temperature Ion Exchange Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 441-448. |
[7] | LIU Qilu, ZHENG Mingyang, GAO Yang, ZHANG Longxi, SONG Yukun, WANG Fulei, LIU Hong, WANG Dongzhou, SANG Yuanhua. Poling Electric Field Uniformization Design Regulates the Duty Cycle of Periodically Poled Lithium Niobate [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 449-457. |
[8] | DUAN Yumeng, JIA Yuechen, LYU Jinman. Femtosecond Laser Direct Writing of Lithium Niobate Crystal Semi-Cladding Optical Waveguide [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 458-464. |
[9] | CHEN Li, ZHOU Xudong, YUAN Mingrui, XIAO Huifu, TIAN Yonghui. Integrated Lithium Niobate Polarization Beam Splitter Based on a Subwavelength Grating-Assisted Directional Coupler [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 465-471. |
[10] | SHI Lihong, GAO Zuoxuan, YAN Wenbo. Photovoltaic Transportation of Surfactant-Mediated Aqueous Microdroplets on LiNbO3 Platform [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 472-479. |
[11] | WANG Zhengpeng, ZHANG Chongde, SUN Xinyu, HU Tiancheng, CUI Mei, ZHANG Yijun, GONG Hehe, REN Fangfang, GU Shulin, ZHANG Rong, YE Jiandong. MOCVD Epitaxy of β-Ga2O3 Films on Off-Cut Angled Sapphire Substrates and Fabrication of Solar-Blind Ultraviolet Photodetector [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(6): 1007-1015. |
[12] | SHI Lihong, SHEN Xunan, YAN Wenbo. Study on the Photorefractive Parameters of Lithium Niobate Crystals Doped with Fe and Hf [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(3): 436-441. |
[13] | ZHENG Dahuai, ZHANG Yuqi, WANG Shuolin, LIU Hongde, LIU Shiguo, KONG Yongfa, BO Fang, XU Jingjun. Photorefractive Effect of Lithium Niobate Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(9-10): 1626-1642. |
[14] | ZHAO Qinghua, ZHENG Dan, CHEN Peng, WANG Tao, JIE Wanqi. Research Progress on Indium Selenide Crystals and Optoelectronic Devices [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(9-10): 1703-1721. |
[15] | WU Jing, LI Qinglian, ZHANG Zhongzheng, YANG Jinfeng, HAO Yongxin, LI Jiaxin, LIU Shiguo, ZHANG Ling, SUN Jun. Experimental Study on Internal Bias Electric Field of Nominally Undoped and Doped Lithium Niobate Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(4): 571-578. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||