[1] BOES A, CHANG L, LANGROCK C, et al. Lithium niobate photonics: unlocking the electromagnetic spectrum[J]. Science, 2023, 379(6627): eabj4396. [2] OSSI P M. Advances in the application of lasers in materials science[M]. Berlin: Springer, 2018. [3] READY J F. Industrial applications of lasers[M]. 2nd ed. San Diego: Academic Press, 1997. [4] KONG Y F, BO F, WANG W W, et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices[J]. Advanced Materials, 2020, 32(3): e1806452. [5] 孙 军, 郝永鑫, 张 玲, 等. 铌酸锂晶体及其应用概述[J]. 人工晶体学报, 2020, 49(6): 947-964. SUN J, HAO Y X, ZHANG L, et al. Brief review of lithium niobate crystal and its applications[J]. Journal of Synthetic Crystals, 2020, 49(6): 947-964 (in Chinese). [6] BRYAN D A, GERSON R, TOMASCHKE H E. Increased optical damage resistance in lithium niobate[J]. Applied Physics Letters, 1984, 44(9): 847-849. [7] 陈海伟, 胡小鹏, 祝世宁. 光学超晶格: 从体块到薄膜[J]. 人工晶体学报, 2022, 51(9-10): 1527-1534. CHEN H, HU X, ZHU S. Optical superlattice: from bulk to thin film [J]. Journal of Synthetic Crystals, 2022, 51 (9-10): 1527-1534 (in Chinese). [8] FENG D, MING N B, HONG J F, et al. Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains[J]. Applied Physics Letters, 1980, 37(7): 607. [9] YAMADA M, NADA N, SAITOH M, et al. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation[J]. Applied Physics Letters, 1993, 62(5): 435-436. [10] 刘 宏, 桑元华, 孙德辉, 等. 信息时代的铌酸锂晶体: 进展与展望[J].人工晶体学报, 2021, 50(4): 708-715. LIU H, SANG Y, SUN D, et al. Lithium niobate crystals in the information age: progress and prospect [J]. Journal of Synthetic Crystals, 2021, 50(4): 708-715. [11] ZHU S N, ZHU Y Y, ZHANG Z Y, et al. LiTaO3 crystal periodically poled by applying an external pulsed field[J]. Journal of Applied Physics, 1995, 77(10): 5481-5483. [12] 纪 磊, 于 建, 倪文俊, 等. 外加电场法制备周期极化铌酸锂的重要结构参数的数值分析[J]. 人工晶体学报, 2005, 34(5): 920-925. JI L, YU J, NI W J, et al. Numerical analysis of geometric parameters in periodic electric poled lithium niobate[J]. Journal of Synthetic Crystals, 2005, 34(5): 920-925 (in Chinese). [13] WANG F L, SUN D H, LIU Q L, et al. Growth of large size near-stoichiometric lithium niobate single crystals with low coercive field for manufacturing high quality periodically poled lithium niobate[J]. Optical Materials, 2022, 125: 112058. [14] ISHIZUKI H, TAIRA T, KURIMURA S, et al. Periodic poling in 3-mm-thick MgO∶LiNbO3 crystals[J]. Japanese Journal of Applied Physics, 2003, 42(Part 2, No. 2A): L108-L110. [15] KURODA A, KURIMURA S, UESU Y. Domain inversion in ferroelectric MgO∶LiNbO3 by applying electric fields[J]. Applied Physics Letters, 1996, 69(11): 1565-1567. [16] LIANG L Y, WANG F L, SANG Y H, et al. Facile approach for the periodic poling of MgO-doped lithium niobate with liquid electrodes[J]. CrystEngComm, 2019, 21(6): 941-947. [17] SHUR V Y, RUMYANTSEV E L, NIKOLAEVA E V, et al. Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic applications[J]. Ferroelectrics, 2000, 236(1): 129-144. [18] SHUR V Y, AKHMATKHANOV A R, BATURIN I S. Micro- and nano-domain engineering in lithium niobate[J]. Applied Physics Reviews, 2015, 2(4): 040604. [19] LIU Q L, SONG Y K, WANG F L, et al. Ferroelectric domain reversal dynamics in LiNbO3 optical superlattice investigated with a real-time monitoring system[J]. Small, 2022, 18(32): 2202761. [20] MILLER G D. Periodically poled lithium niobate: modeling, fabrication, and nonlinear-optical performance[D]. Stanford: Stanford University, 1998. [21] MISSEY M, RUSSELL S, DOMINIC V, et al. Real-time visualization of domain formation in periodically poled lithium niobate[J]. Optics Express, 2000, 6(10): 186-195. [22] LIU Q L, WANG F L, WANG D Z, et al. Temperature dependent domain-wall moving dynamics of lithium niobate during high electric field periodic poling[J]. Journal of Applied Physics, 2020, 128(22): 224101. |