[1] MILLER S. Integrated optics: an introduction[J]. Bell System Technical Journal, 1969, 48(7): 2059-2069. [2] TAMIR T. Integrated optics[M]. Berlin: Springer Verlage, 1975. [3] BALANIS C A. Advanced engineering electromagnetics[M]. New York: John Wiley & Sons, 2012. [4] MURPHY E. Integrated optical circuits and components[M]. Boca Raton: CRC Press, 2020. [5] LIFANTE G. Integrated photonics: fundamentals[M]. Hoboken: John Wiley & Sons, 2003. [6] YARIV A, YEH P. Photonics optical electronics in modern communications[M]. Oxford: Oxford University Press, 2006. [7] SALEH B E A, TEICH M C. Fundamentals of photonics[M]. New York: John Wiley & Sons, 2019. [8] CHOUDHURY D, RODENAS A, PATERSON L, et al. Three-dimensional microstructuring of yttrium aluminum garnet crystals for laser active optofluidic applications[J]. Applied Physics Letters, 2013,(103): 041101-041104. [9] SUM T, BETTIOL A, VAN KAN J, et al. Proton beam writing of low-loss polymer optical waveguides[J]. Applied Physics Letters, 2003, 83(9): 1707-1709. [10] TIEN P, ULRICH R, and MARTIN R. Modes of propagating light waves in thin deposited semiconductor films[J]. Applied Physics Letters, 1969, 14(9): 291-294. [11] ATUCHIN V, ZILING K, and SHIPILOVA D. Investigation of optical waveguides fabricated by titanium diffusion in LiTaO3[J]. Soviet Journal of Quantum Electronics, 1984, 14(5): 671-674. [12] HUKRIEDE J, KIP D, KRÄTZIG E. Permanent narrow-band reflection holograms for infrared light recorded in LiNbO3∶Ti∶Cu channel waveguides[J]. Applied Physics B, 2001, 72(6): 749-753. [13] KAWATA S, SUN H B, TANAKA T, et al. Finer features for functional microdevices[J]. Nature, 2001, 412(6848): 697-698. [14] SUN H B, MATSUO S, MISAWA H. Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin[J]. Applied physics letters, 1999, 74(6): 786-788. [15] GLEZER E, MILOSAVLJEVIC M, HUANG L, et al. Three-dimensional optical storage inside transparent materials[J]. Optics Letters, 1996, 21(24): 2023-2025. [16] WATANABE W, SOWA S, TAMAKI T, et al. Three-dimensional waveguides fabricated in poly (methyl methacrylate) by a femtosecond laser[J]. Japanese Journal of Applied Physics, 2006, 45(8): 765-767. [17] HANADA Y, SUGIOKA K, MIDORIKAWA K. UV waveguides light fabricated in fluoropolymer CYTOP by femtosecond laser direct writing[J]. Optics Express, 2010, 18(2): 446-450. [18] SUGIOKA K, CHENG Y. Ultrafast lasers—reliable tools for advanced materials processing[J]. Light: Science & Applications, 2014, 3(4): 149. [19] DAVIS K, MIURA K, SUGIMOTO N, et al. Writing waveguides in glass with a femtosecond laser[J]. Optics Letters, 1996, 21(21): 1729-1731. [20] GLEZER E, MILOSAVLJEVIC M, HUANG L, et al. Three-dimensional optical storage inside transparent materials[J]. Optics Letters, 1996, 21(24): 2023-2025. [21] MARSHALL G, POLITI A, MATTHEWS J, et al. Laser written waveguide photonic quantum circuits[J]. Optics Express, 2009, 17(15): 12546-12554. [22] BURGHOFF J, NOLTE S, TUNNERMANN A. Origins of waveguiding in femtosecond laser-structured LiNbO3[J]. Applied Physics, A. Materials Science & Processing, 2007(89): 127-132. [23] TORCHIA G, MEILÁN P, RODENAS A, et al. Femtosecond laser written surface waveguides fabricated in Nd∶YAG ceramics[J]. Optics Express, 2007, 15(20): 13266-13271. [24] SILVA W, JACINTO C, BENAYAS A, et al. Femtosecond-laser-written, stress-induced Nd∶YVO4 waveguides preserving fluorescence and Raman gain[J]. Optics Letters, 2010, 35(7): 916-918. [25] JIA Y, CHEN F. Optical channel waveguides in ZnSe single crystal produced by proton implantation[J]. Optical Materials Express, 2012, 2(4): 455-460. [26] WONG K K. Properties of lithium niobate[M]. London: The Institution of Engineering and Technology Press, 2002. [27] VOLK T, WÖHLECKE M. Lithium niobate: defects, photorefraction and ferroelectric switching[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. [28] JACKEL J, RICE C, VESELKA J. Proton exchange in LiNbO3[J]. Ferroelectrics, 1983, 50(1): 165-170. [29] VAINIO M, MERIMAA M, NYHOLM K. Optical amplifier for femtosecond frequency comb measurements near 633 nm[J]. Applied Physics B, 2005, 81(8): 1053-1057. [30] AVCI P, GUPTA A, SADASIVAM M, et al. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring[J]. Seminars in cutaneous medicine and surgery, 2013, 32(1): 41-52. [31] BUSKE I, WALTHER A, FITZ D, et al. Smart GPS spoofing to countermeasure autonomously approaching agile micro UAVs[J]. High-Power Lasers and Technologies for Optical Countermeasures, 2022(12273): 62-67. [32] SPIEGELBERG C, GENG J, HU Y, et al. Low-noise narrow-linewidth fiber laser at 1550 nm[J]. Journal of Lightwave Technology, 2004, 22(1): 57-62. [33] OSELLAME R, CERULLO G. Femtosecond laser micromachining[M]. Berlin: Springer-Verlag Berlin Heidelberg, 2012. [34] SIEBENMORGEN J, PETERMANN K, HUBER G, et al. Femtosecond laser written stress-induced Nd∶Y3Al5O12 (Nd∶YAG) channel waveguide laser[J]. Applied Physics B, 2009, 97(2): 251-255. [35] DOMACHUK P, CHAPMAN A, MÄGI E, et al. Tapered high-fill photonic crystal fiber[M]. Berlin: Springer Netherlands, 2005. [36] LV J, CHENG Y, YUAN W, et al. Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal [J]. Optical Materials Express, 2015, 5: 1274-1280. [37] LV J, CHENG Y, LU Q, et al. Femtosecond laser written optical waveguides in z-cut MgO∶LiNbO3 crystal: fabrication and optical damage investigation [J]. Optical Materials, 57: 169-173. |