[1] 于浩海, 潘忠奔, 张怀金, 等. 无序激光晶体及其超快激光研究进展[J]. 人工晶体学报, 2021, 50(4): 648-668+583. YU H H, PAN Z B, ZHANG H J, et al. Development of disordered laser crystals and their ultrafast lasers[J]. Journal of Synthetic Crystals, 2021, 50(4): 648-668+583 (in Chinese). [2] KANCHANAVALEERAT E, COCHET-MUCHY D, KOKTA M, et al. Crystal growth of high doped Nd∶YAG[J]. Optical Materials, 2004, 26(4): 337-341. [3] PAN H, PAN Z B, CHU H W, et al. GaAs Q-switched Nd∶CNGG lasers: operating at 4F3/2→2I11/2 and 4F3/2→2I13/2 transitions[J]. Optics Express, 2019, 27(11): 15426-15432. [4] SHI Z B, FANG X, ZHANG H J, et al. Continuous-wave laser operation at 1.33 μm of Nd∶CNGG and Nd∶CLNGG crystals[J]. Laser Physics Letters, 2008, 5(3): 177-180. [5] LI Q N, FENG B H, ZHANG D X, et al. Q-switched 935 nm Nd∶CNGG laser[J]. Applied Optics, 2009, 48(10): 1898-1903. [6] XIE G Q, TANG D Y, LUO H, et al. Dual-wavelength synchronously mode-locked Nd∶CNGG laser[J]. Optics Letters, 2008, 33(16): 1872. [7] SCHMIDT A, GRIEBNER U, ZHANG H J, et al. Passive mode-locking of the Yb∶CNGG laser[J]. Optics Communications, 2010, 283(4): 567-569. [8] LIU J H, WAN Y, ZHOU Z C, et al. Comparative study on the laser performance of two Yb-doped disordered garnet crystals: Yb∶CNGG and Yb∶CLNGG[J]. Applied Physics B, 2012, 109(2): 183-188. [9] SI W, MA Y J, WANG L S, et al. Acousto-optically Q-switched operation of Yb∶CNGG disordered crystal laser[J]. Chinese Physics Letters, 2017, 34(12): 124201. [10] COYA C, FIERRO J L G, ZALDO C. Thermal reduction of sillenite and eulite single crystals[J]. Journal of Physics and Chemistry of Solids, 1997, 58(9): 1461-1467. [11] ZALDO C, MARTIN M J, COYA C, et al. Optical properties of MgNb2O6 single crystals: a comparison with LiNbO3[J]. Journal of Physics: Condensed Matter, 1995, 7(11): 2249-2257. [12] GARCÍA-CABAES A, SANZ-GARCÍA J A, CABRERA J M, et al. Influence of stoichiometry on defect-related phenomena in LiNbO3[J]. Physical Review B, Condensed Matter, 1988, 37(11): 6085-6091. [13] MARTÍN M J, BRAVO D, SOLÉ R, et al. Thermal reduction of KTiOPO4 single crystals[J]. Journal of Applied Physics, 1994, 76(11): 7510-7518. [14] SCHMIDT A, RIVIER S, PETROV V, et al. Continuous-wave tunable and femtosecond mode-locked laser operation of Yb∶NaY(MoO4)2[J]. JOSA B, 2008, 25(8): 1341-1349. [15] MÉNDEZ-BLAS A, RICO M, VOLKOV V, et al. Optical spectroscopy of Pr3+ in M+Bi(XO4)2, M+=Li or Na and X=W or Mo, locally disordered single crystals[J]. Journal of Physics: Condensed Matter, 2004, 16(12): 2139-2160. [16] VOLKOV V, RICO M, MÉNDEZ-BLAS A, et al. Preparation and properties of disordered NaBi(XO4)2, X=W or Mo, crystals doped with rare earths[J]. Journal of Physics and Chemistry of Solids, 2002, 63(1): 95-105. [17] SHIMAMURA K, TIMOSHECHKIN M, SASAKI T, et al. Growth and characterization of calcium niobium gallium garnet (CNGG) single crystals for laser applications[J]. Journal of Crystal Growth, 1993, 128(1/2/3/4): 1021-1024. [18] CASTELLANO-HERNÁNDEZ E, SERRANO M D, JIMÉNEZ RIOBÓO R J, et al. Na modification of lanthanide doped Ca3Nb1.5Ga3.5O12-type laser garnets: Czochralski crystal growth and characterization[J]. Crystal Growth & Design, 2016, 16(3): 1480-1491. [19] VORONKO Y K, SOBOL A A, KARASIK A Y, et al. Calcium niobium gallium and calcium lithium niobium gallium garnets doped with rare earth ions-effective laser media[J]. Optical Materials, 2002, 20(3): 197-209. [20] ÁLVAREZ-PÉREZ J O, CANO-TORRES J M, RUIZ A, et al. A roadmap for laser optimization of Yb∶Ca3(NbGa)5O12-CNGG-type single crystal garnets[J]. Journal of Materials Chemistry C, 2021, 9(13): 4628-4642. [21] SU L B, XU J, XUE Y H, et al. Low-threshold diode-pumped Yb3+, Na+∶CaF2 self-Q-switched laser[J]. Optics Express, 2005, 13(15): 5635-5640. |