[1] STOLLER M D, PARK S, ZHU Y W, et al. Graphene-based ultracapacitors[J]. Nano Letters, 2008, 8(10): 3498-3502. [2] YAO H T, GUO X, BAO A D, et al. Graphene-based heterojunction for enhanced photodetectors[J]. Chinese Physics B, 2022, 31(3): 038501. [3] LIAO L, LIN Y C, BAO M Q, et al. High-speed graphene transistors with a self-aligned nanowire gate[J]. Nature, 2010, 467: 305-308. [4] BAO A D, LI X C, GUO X, et al. Tuning the structural, electronic, mechanical and optical properties of silicene monolayer by chemical functionalization: a first-principles study[J]. Vacuum, 2022, 203: 111226. [5] WOOD J D, WELLS S A, JARIWALA D, et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation[J]. Nano Letters, 2014, 14(12): 6964-6970. [6] HUANG X, SHU X M, LI J, et al. DFT study on type-II photocatalyst for overall water splitting: g-GaN/C2N van der Waals heterostructure[J]. International Journal of Hydrogen Energy, 2023, 48(33): 12364-12373. [7] XU X H, YANG L, GAO Q, et al. Type-II MoSi2N4/MoS2 van der waals heterostructure with excellent optoelectronic performance and tunable electronic properties[J]. The Journal of Physical Chemistry C, 2023, 127(16): 7878-7886. [8] LI X C, BAO A D, GUO X, et al. A type-II GaP/GaSe van der Waals heterostructure with high carrier mobility and promising photovoltaic properties[J]. Applied Surface Science, 2023, 618: 156544. [9] XU X D, WANG M, GONG N, et al. Interface characteristics of graphene/ZnS hybrid-dimensional heterostructures[J]. Optics Express, 2022, 30(23): 42605-42613. [10] LI L, YANG H Y, YANG P. WS2/MoSe2 van der Waals heterojunctions applied to photocatalysts for overall water splitting[J]. Journal of Colloid and Interface Science, 2023, 650: 1312-1318. [11] LUO Q Q, YIN S Q, SUN X X, et al. Two-dimensional GaS/MoTe2 van der Waals heterostructures with tunable electronic and optical properties[J]. Materials Science in Semiconductor Processing, 2022, 152: 107103. [12] GE C P, WANG B Y, YANG H D, et al. Direct Z-scheme GaSe/ZrS2 heterojunction for overall water splitting[J]. International Journal of Hydrogen Energy, 2023, 48(36): 13460-13469. [13] XIONG A H, ZHOU X L. First-principles calculations of the structural, electronic, and optical properties of a ZnS/GaP van der Waals heterostructure[J]. Journal of Computational Electronics, 2019, 18(3): 758-769. [14] WANG Z L, ZHANG H Y, CAO H W, et al. Facile preparation of ZnS/CdS core/shell nanotubes and their enhanced photocatalytic performance[J]. International Journal of Hydrogen Energy, 2017, 42(27): 17394-17402. [15] LIU D X, LI X Y, SHI Z, et al. Synthesis of porous ZnS/ZnSe nanosheets for enhanced visible light photocatalytic activity[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(13): 11605-11612. [16] FENG W, ZHENG W, CAO W W, et al. Back gated multilayer InSe transistors with enhanced carrier mobilities via the suppression of carrier scattering from a dielectric interface[J]. Advanced Materials, 2014, 26(38): 6587-6593. [17] ZHOU Y B, NIE Y F, LIU Y J, et al. Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets[J]. ACS Nano, 2014, 8(2): 1485-1490. [18] ZENG L R, ZHANG S Y, YAO L W, et al. A type-II NGyne/GaSe heterostructure with high carrier mobility and tunable electronic properties for photovoltaic application[J]. Nanotechnology, 2022, 34(6): 065702. [19] ALHARBI S R, ABDALLAHA M M A, QASRAWI A F. Structural and optical properties of the ZnS/GaSe heterojunctions[J]. Materials Research Express, 2017, 4(11): 116408. [20] CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Zeitschrift Für Kristallographie-Crystalline Materials, 2005, 220(5/6): 567-570. [21] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [22] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192. [23] GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. Journal of Computational Chemistry, 2006, 27(15): 1787-1799. [24] TORABI A, STAROVEROV V N. Band gap reduction in ZnO and ZnS by creating layered ZnO/ZnS heterostructures[J]. The Journal of Physical Chemistry Letters, 2015, 6(11): 2075-2080. [25] BARDEEN J, SHOCKLEY W. Deformation potentials and mobilities in non-polar crystals[J]. Physical Review, 1950, 80(1): 72-80. [26] RAWAT A, JENA N, DIMPLE, et al. A comprehensive study on carrier mobility and artificial photosynthetic properties in group VI B transition metal dichalcogenide monolayers[J]. Journal of Materials Chemistry A, 2018, 6(18): 8693-8704. [27] OBEID M M, BAFEKRY A, UR REHMAN S, et al. A type-II GaSe/HfS2 van der Waals heterostructure as promising photocatalyst with high carrier mobility[J]. Applied Surface Science, 2020, 534: 147607. [28] CUI Z, REN K, ZHAO Y M, et al. Electronic and optical properties of van der Waals heterostructures of g-GaN and transition metal dichalcogenides[J]. Applied Surface Science, 2019, 492: 513-519. |