[1] EDDY C R Jr, GASKILL D K. Silicon carbide as a platform for power electronics[J]. Science, 2009, 324(5933): 1398-1400. [2] 杨祥龙, 杨 昆, 陈秀芳, 等. 高质量N型SiC单晶生长及其器件应用[J]. 人工晶体学报, 2015, 44(6): 1427-1431. YANG X L, YANG K, CHEN X F, et al. Growth and device application of high quality N-type SiC single crystals[J]. Journal of Synthetic Crystals, 2015, 44(6): 1427-1431 (in Chinese). [3] KIMOTO T. Material science and device physics in SiC technology for high-voltage power devices[J]. Japanese Journal of Applied Physics, 2015, 54(4): 040103. [4] 李 倩. 国内外碳化硅衬底材料发展的技术现状[J]. 四川化工, 2017, 20(5): 15-17. LI Q. Silicon carbide substrate material progress over the abroad[J]. Sichuan Chemical Industry, 2017, 20(5): 15-17 (in Chinese). [5] SHE X, HUANG A Q, LUCÍA Ó, et al. Review of silicon carbide power devices and their applications[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8193-8205. [6] WANG J F, YAN F F, LI Q, et al. Coherent control of nitrogen-vacancy center spins in silicon carbide at room temperature[J]. Physical Review Letters, 2020, 124(22): 223601. [7] KIMOTO T, WATANABE H. Defect engineering in SiC technology for high-voltage power devices[J]. Applied Physics Express, 2020, 13(12): 120101. [8] SUMAKERIS J J, LEONARD R T, DEYNEKA E, et al. Dislocation characterization in 4H-SiC crystals[J]. Materials Science Forum, 2016, 858: 393-396. [9] 杨 光, 刘晓双, 李佳君, 等. 4H碳化硅单晶中的位错[J]. 人工晶体学报, 2022, 51(9-10): 1673-1690. YANG G, LIU X S, LI J J, et al. Dislocation in 4H silicon carbide single crystal[J]. Journal of Synthetic Crystals, 2022, 51(9-10): 1673-1690. [10] 张家鑫, 彭 燕, 陈秀芳, 等. 碳化硅单晶位错研究进展[J]. 人工晶体学报, 2022, 51(11): 1973-1982. ZHANG J X, PENG Y, CHEN X F, et al. Research progress of dislocations in SiC single crystal[J]. Journal of Synthetic Crystals, 2022, 51(11): 1973-1982 (in Chinese). [11] LI J J, LUO H, YANG G, et al. Nitrogen decoration of basal-plane dislocations in 4H-SiC[J]. Physical Review Applied, 2022, 17(5): 054011. [12] LU S O, CHEN H Y, HANG W, et al. Numerical analysis of the dislocation density in n-type 4H-SiC[J]. CrystEngComm, 2023, 25(26): 3718-3725. [13] NA M, KANG I H, MOON J H, et al. Role of the oxidizing agent in the etching of 4H-SiC substrates with molten KOH[J]. Journal of the Korean Physical Society, 2016, 69(11): 1677-1682. [14] SUN S, SONG H P, YANG J W, et al. The etching behaviour of dislocations in N-doped 4H-SiC substrate[J]. Journal of Crystal Growth, 2023, 618: 127318. [15] 孙 帅, 宋华平, 杨军伟, 等. 利用干燥空气改善熔融KOH对单晶碳化硅的腐蚀[J]. 人工晶体学报, 2023, 52(5): 753-758. SUN S, SONG H P, YANG J W, et al. Optimization of KOH etching for single crystal SiC by dry air[J]. Journal of Synthetic Crystals, 2023, 52(5): 753-758 (in Chinese). [16] 章 宇, 陈诺夫, 张 芳, 等. 4H-SiC贯穿型位错及其密度分布的表征方法优化[J]. 半导体技术, 2023, 48(11): 977-984. ZHANG Y, CHEN N F, ZHANG F, et al. Optimization of characterization methods for 4H-SiC threading dislocation and its density distribution[J]. Semiconductor Technology, 2023, 48(11): 977-984 (in Chinese). [17] GAO Y, ZHANG Z H, BONDOKOV R, et al. The effect of doping concentration and conductivity type on preferential etching of 4H-SiC by molten KOH[J]. MRS Online Proceedings Library, 2004, 815(1): 6-10. [18] KALLINGER B, POLSTER S, BERWIAN P, et al. Threading dislocations in n- and p-type 4H-SiC material analyzed by etching and synchrotron X-ray topography[J]. Journal of Crystal Growth, 2011, 314(1): 21-29. [19] ANZALONE R, SEVERINO A, PILUSO N, et al. Dislocations analysis on implanted (p-type and n-type) 4H-SiC epi-layer by KOH molten etching[J]. Materials Science Forum, 2020, 1004: 408-413. [20] GAO J X, JU T, ZHANG L G, et al. Characterization of dislocation etch pits by molten KOH etching in n- and p-type 4H-SiC epilayers doped by ion implantation[J]. Materials Science in Semiconductor Processing, 2023, 165: 107647. [21] MAHAJAN S, ROKADE M V, ALI S T, et al. Investigation of micropipe and defects in molten KOH etching of 6H n-silicon carbide (SiC) single crystal[J]. Materials Letters, 2013, 101: 72-75. [22] DONG L, ZHENG L, LIU X F, et al. Defect revelation and evaluation of 4H silicon carbide by optimized molten KOH etching method[J]. Materials Science Forum, 2013, 740/741/742: 243-246. [23] WANG H J, YU J Y, HU G J, et al. Micropipes in SiC single crystal observed by molten KOH etching[J]. Materials, 2021, 14(19): 5890. [24] 张序清, 罗 昊, 李佳君, 等. 半导体碳化硅湿法腐蚀工艺研究[J]. 人工晶体学报, 2022, 51(2): 333-343. ZHANG X Q, LUO H, LI J J, et al. Research progress on wet etching of semiconductor SiC[J]. Journal of Synthetic Crystals, 2022, 51(2): 333-343 (in Chinese). [25] CUI Y X, HU X B, XIE X J, et al. Threading dislocation classification for 4H-SiC substrates using the KOH etching method[J]. CrystEngComm, 2018, 20(7): 978-982. [26] ZHUANG D, EDGAR J H. Wet etching of GaN, AlN, and SiC: a review[J]. Materials Science and Engineering: R: Reports, 2005, 48(1): 1-46. [27] 杨 莺, 陈治明. 湿法腐蚀工艺研究碳化硅晶体缺陷表面形貌[J]. 人工晶体学报, 2008, 37(3): 634-638. YANG Y, CHEN Z M. Defect characterization of SiC by wet etching process[J]. Journal of Synthetic Crystals, 2008, 37(3): 634-638 (in Chinese). [28] 苗瑞霞. 腐蚀参数对SiC单晶材料位错腐蚀效果的影响[J]. 科技创新导报, 2013, 10(25): 87-89. MIAO R X. Effects of etching parameters on dislocation etching morphology of SiC single-crystal materials[J]. Science and Technology Innovation Herald, 2013, 10(25): 87-89 (in Chinese). [29] 钮应喜, 芦伟立, 王方方, 等. 熔融KOH腐蚀4H-SiC外延层的研究[J]. 智能电网, 2015, 3(12): 1164-1167. NIU Y X, LU W L, WANG F F, et al. Research on the molten KOH etched 4H-SiC epilayers[J]. Smart Grid, 2015, 3(12): 1164-1167 (in Chinese). [30] SAKWE S A, JANG Y S, WELLMANN P J. Defect etching of non-polar and semi-polar faces in SiC[J]. Materials Science Forum, 2007, 556/557: 243-246. [31] YU J Y, YANG X L, PENG Y, et al. Revelation of the dislocations in the C-face of 4H-SiC substrates using a microwave plasma etching treatment[J]. CrystEngComm, 2021, 23(2): 353-359. [32] HATAYAMA T, SHIMIZU T, KOUKETSU H, et al. Thermal etching of 4H-SiC(0001) Si faces in the mixed gas of chlorine and oxygen[J]. Japanese Journal of Applied Physics, 2009, 48(6R): 066516. [33] KATSUNO M, OHTANI N, TAKAHASHI J, et al. Mechanism of molten KOH etching of SiC single crystals: comparative study with thermal oxidation[J]. Japanese Journal of Applied Physics, 1999, 38(8): 4661. [34] SAKWE S A, MÜLLER R, WELLMANN P J. Optimization of KOH etching parameters for quantitative defect recognition in n- and p-type doped SiC[J]. Journal of Crystal Growth, 2006, 289(2): 520-526. [35] SHOR J S, OSGOOD R M, KURTZ A D. Photoelectrochemical conductivity selective etch stops for SiC[J]. Applied Physics Letters, 1992, 60(8): 1001-1003. [36] SHOR J S, ZHANG X G, OSGOOD R M. Laser-assisted photoelectrochemical etching of n-type beta-SiC[J]. Journal of the Electrochemical Society, 1992, 139(4): 1213-1216. [37] SYVÄJÄRVI M, YAKIMOVA R, JANZÉN E. Anisotropic etching of SiC[J]. Journal of the Electrochemical Society, 2000, 147(9): 3519. [38] YANG G, LUO H, LI J J, et al. Discrimination of dislocations in 4H-SiC by inclination angles of molten-alkali etched pits[J]. Journal of Semiconductors, 2022, 43(12): 122801. |