[1] 何睿夫, 周非凡, 屈军乐, 等. 金属有机框架材料在有机钙钛矿太阳能电池中的应用进展[J]. 发光学报, 2021, 42(11): 1722-1738. HE R F, ZHOU F F, QU J L, et al. Research progress of metal-organic frameworks in organic perovskite solar cells[J]. Chinese Journal of Luminescence, 2021, 42(11): 1722-1738 (in Chinese). [2] 王传坤, 陆成伟, 欧阳雨洁, 等. Sn基CH3NH3SnI3钙钛矿太阳能电池性能计算与优化[J]. 人工晶体学报, 2023, 52(11): 2076-2084. WANG C K, LU C W, OUYANG Y J, et al. Optimization and numerical simulation of Sn-based CH3NH3SnI3 perovskite solar cell[J]. Journal of Synthetic Crystals, 2023, 52(11): 2076-2084 (in Chinese). [3] SCHIERMEIER Q, TOLLEFSON J, SCULLY T, et al. Electricity without carbon[J]. Nature, 2008, 454: 816-824. [4] LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107): 643-647. [5] KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific reports, 2012, 2(1): 591. [6] GREEN M A, HO-BAILLIE A, SNAITH H J. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8(7): 506-514. [7] GRATZEL M. The light and shade of perovskite solar cells[J]. Nature Materials, 2014, 13(9): 838-842. [8] YIN W J, SHI T, YAN Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance[J]. Advanced Materials, 2014, 26(27): 4653-4658. [9] YIN W J, YANG J H, KANG J, et al. Halide perovskite materials for solar cells: a theoretical review[J]. Journal of Materials Chemistry A, 2015, 3(17): 8926-8942. [10] XIAO Z, YAN Y. Progress in theoretical study of metal halide perovskite solar cell materials[J]. Advanced Energy Materials, 2017, 7(22): 1701136. [11] NOH J H, IM S H, HEO J H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J]. Nano Letters, 2013, 13(4): 1764-1769. [12] NIU G, LI W, MENG F, et al. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells[J]. Journal of Materials Chemistry A, 2014, 2(3): 705-710. [13] MA B, GAO R, WANG L, et al. Alternating assembly structure of the same dye and modification material in quasi-solid state dye-sensitized solar cell[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 202(1): 33-38. [14] LI W, LI J, WANG L, et al. Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance[J]. Journal of Materials Chemistry A, 2013, 1(38): 11735-11740. [15] FROST J M, BUTLER K T, BRIVIO F, et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells[J]. Nano letters, 2014, 14(5): 2584-2590. [16] XIAO Z, SONG Z, YAN Y. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives[J]. Advanced Materials, 2019, 31(47): 1803792. [17] WANG L, MIAO Q, WANG D, et al. 14.31% power conversion efficiency of Sn-based perovskite solar cells via efficient reduction of Sn4+[J]. Angewandte Chemie, 2023, 135(33): e202307228. [18] KIM H, LEE Y H, LYU T, et al. Boosting the performance and stability of quasi-two-dimensional tin-based perovskite solar cells using the formamidinium thiocyanate additive[J]. Journal of Materials Chemistry A, 2018, 6(37): 18173-18182. [19] LEE L C, HUQ T N, MACMANUS-DRISCOLL J L, et al. Research Update: Bismuth-based perovskite-inspired photovoltaic materials[J]. APL Materials, 2018, 6(8): 084502. [20] CATES N, BERNECHEA M. Research Update: Bismuth based materials for photovoltaics[J]. APL Materials, 2018, 6(8): 5026541. [21] ZHANG L, WANG K, ZOU B. Bismuth halide perovskite-like materials: current opportunities and challenges[J]. ChemSusChem, 2019, 12(8): 1612-1630. [22] BRANDT R E, POINDEXTER J R, GORAI P, et al. Searching for “defect-tolerant” photovoltaic materials: combined theoretical and experimental screening[J]. Chemistry of Materials, 2017, 29(11): 4667-4674. [23] HOYE R L Z, LEE L C, KURCHIN R C, et al. Strongly enhanced photovoltaic performance and defect physics of air-stable bismuth oxyiodide (BiOI)[J]. Advanced Materials, 2017, 29(36): 1702176. [24] BRANDT R E, STEVANOVIĆ V, GINLEY D S, et al. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites[J]. Mrs Communications, 2015, 5(2): 265-275. [25] GANOSE A M, CUFF M, BUTLER K T, et al. Interplay of orbital and relativistic effects in bismuth oxyhalides: BiOF, BiOCl, BiOBr, and BiOI[J]. Chemistry of materials, 2016, 28(7): 1980-1984. [26] BHACHU D S, MONIZ S J A, SATHASIVAM S, et al. Bismuth oxyhalides: synthesis, structure and photoelectrochemical activity[J]. Chemical Science, 2016, 7(8): 4832-4841. [27] UMARI P, MOSCONI E, DE ANGELIS F. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications[J]. Scientific reports, 2014, 4: 4467. [28] STOUMPOS C C, FRAZER L, CLARK D J, et al. Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties[J]. Journal of the American Chemical Society, 2015, 137(21): 6804-6819. [29] CHANG J H, DOERT T, RUCK M. Structural variety of defect perovskite variants M3E2X9 (M=Rb, Tl, E=Bi, Sb, X=Br, I)[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 2016, 642(13): 736-748. [30] SUN Y Y, SHI J, LIAN J, et al. Discovering lead-free perovskite solar materials with a split-anion approach[J]. Nanoscale, 2016, 8(12): 6284-6289. [31] ZHOU J, RONG X, MOLOKEEV M S, et al. Exploring the transposition effects on the electronic and optical properties of Cs2AgSbCl6 via a combined computational-experimental approach[J]. Journal of Materials Chemistry A, 2018, 6(5): 2346-2352. [32] NIE R, YUN H S, PAIK M J, et al. Efficient solar cells based on light-harvesting antimony sulfoiodide[J]. Advanced Energy Materials, 2018, 8(7): 1701901. [33] GANOSE A M, BUTLER K T, WALSH A, et al. Relativistic electronic structure and band alignment of BiSI and BiSeI: candidate photovoltaic materials[J]. Journal of Materials Chemistry A, 2016, 4(6): 2060-2068. [34] NIE R, IM J, SEOK S I. Efficient solar cells employing light-harvesting Sb0.67 Bi0.33SI[J]. Advanced Materials, 2019, 31(18): 1808344. [35] NIE R, MEHTA A, PARK B W, et al. Mixed sulfur and iodide-based lead-free perovskite solar cells[J]. Journal of the American Chemical Society, 2018, 140(3): 872-875. [36] ISLAM S M, MALLIAKAS C D, SARMA D, et al. Direct gap semiconductors Pb2BiS2I3, Sn2BiS2I3, and Sn2BiSI5[J]. Chemistry of Materials, 2016, 28(20): 7332-7343. [37] STAROSTA V I, KROUTIL J, BENES L. Preparation and fundamental physical properties of Sn2SbS2I3 and Pb2SbS2I3 compounds[J]. Crystal Research and Technology, 1990, 25(12): 1439-1442. [38] DOLGIKH V A. Preparation of single crystals and dielectric properties of Sn2SbS2I3 and Pb2SbS2I3[J]. Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy, 1985, 21(7): 1215-18. [39] KAVANAGH S R, SAVORY C N, SCANLON D O, et al. Hidden spontaneous polarisation in the chalcohalide photovoltaic absorber Sn2SbS2I3[J]. Materials Horizons, 2021, 8(10): 2709-2716. [40] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): A1133. [41] BLOCHL P E. Projector augmented-wave method[J]. Physical review B, 1994, 50(24): 17953. [42] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical review letters, 1996, 77(18): 3865. [43] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of chemical physics, 2010, 132(15). [44] GRIMME S, EHRLICH S, GOERIGK L. Effect of the damping function in dispersion corrected density functional theory[J]. Journal of computational chemistry, 2011, 32(7): 1456-1465. [45] HEYD J, SCUSERIA G E, ERNZERHOF M. Hybrid functionals based on a screened Coulomb potential[J]. The Journal of Chemical Physics, 2003, 118(18): 8207-8215. [46] MAINTZ S, DERINGER V L, TCHOUGREEFF A L, et al. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT[J]. Journal of Computational Chemistry, 2016, 37(11): 1030-1035. [47] DERINGER V L, TCHOUGREEFF A L, DRONSKOWSKI R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets[J]. The Journal of Physical Chemistry A, 2011, 115(21): 5461-5466. [48] YU L, KOKENYESI R S, KESZLER D A, et al. Inverse design of high absorption thin-film photovoltaic materials[J]. Advanced Energy Materials, 2013, 3(1): 43-48. |