[1] CHOYKE W J, PENSL G. Physical properties of SiC[J]. MRS Bulletin, 1997, 22(3): 25-29. [2] HUANG Y H, ZHOU Y Q, LI J M, et al. Understanding the role of surface mechanical properties in SiC surface machining[J]. Materials Science in Semiconductor Processing, 2023, 163: 107594. [3] 开翠红, 王 蓉, 杨德仁, 等. 基于碳化硅衬底的宽禁带半导体外延[J]. 人工晶体学报, 2021, 50(9): 1780-1795. KAI C H, WANG R, YANG D R, et al. Epitaxy of wide bandgap semiconductors on silicon carbide substrate[J]. Journal of Synthetic Crystals, 2021, 50(9): 1780-1795 (in Chinese). [4] 马保慧. 基于Si和SiC器件的逆变器系统性能对比研究[J]. 电气传动, 2017, 47(8): 3-6. MA B H. Comparsion analysis for inverter system based on Si and SiC power devices[J]. Electric Drive, 2017, 47(8): 3-6 (in Chinese). [5] PANDA P, CHATTERJEE S, TALLUR S, et al. Beyond 5 GHz excitation of a ZnO-based high-overtone bulk acoustic resonator on SiC substrate[J]. Scientific Reports, 2023, 13: 13329. [6] RUFF M, MITLEHNER H, HELBIG R. SiC devices: physics and numerical simulation[J]. IEEE Transactions on Electron Devices, 1994, 41(6): 1040-1054. [7] FUCHS F, STENDER B, TRUPKE M, et al. Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide[J]. Nature Communications, 2015, 6: 7578. [8] 彭 燕, 陈秀芳, 谢雪健, 等. 半绝缘碳化硅单晶衬底的研究进展[J]. 人工晶体学报, 2021, 50(4): 619-628. PENG Y, CHEN X F, XIE X J, et al. Research progress of semi-insulating silicon carbide single crystal substrate[J]. Journal of Synthetic Crystals, 2021, 50(4): 619-628 (in Chinese). [9] 王 健, 郑非非, 董志刚, 等. 碳化硅磨削亚表面损伤检测方法[J]. 金刚石与磨料磨具工程, 2015, 35(4): 60-65. WANG J, ZHENG F F, DONG Z G, et al. Detection method of subsurface damage of silicon carbide after grinding[J]. Diamond & Abrasives Engineering, 2015, 35(4): 60-65 (in Chinese). [10] ZHAO J, JI P X, LI Y Q, et al. Ultrahigh-mobility semiconducting epitaxial graphene on silicon carbide[J]. Nature, 2024, 625: 60-65. [11] 尹朋涛, 于金英, 杨祥龙, 等. 晶格畸变检测仪研究碳化硅晶片中位错缺陷分布[J]. 人工晶体学报, 2021, 50(4): 752-756. YIN P T, YU J Y, YANG X L, et al. Dislocation distribution in SiC wafers studied by lattice distortion detector[J]. Journal of Synthetic Crystals, 2021, 50(4): 752-756 (in Chinese). [12] 陈国美. 碳化硅晶片超精密抛光工艺及机理研究[D]. 无锡: 江南大学, 2017. CHEN G M. Study on the ultra-precison polishing technology and mechanism of silicon carbide substrates[D]. Wuxi: Jiangnan University, 2017 (in Chinese). [13] DENG H, ENDO K, YAMAMURA K. Competition between surface modification and abrasive polishing: a method of controlling the surface atomic structure of 4H-SiC (0001)[J]. Scientific Reports, 2015, 5: 8947. [14] ZHOU Y, PAN G S, SHI X L, et al. Effects of ultra-smooth surface atomic step morphology on chemical mechanical polishing (CMP) performances of sapphire and SiC wafers[J]. Tribology International, 2015, 87: 145-150. [15] AIDA H, DOI T, TAKEDA H, et al. Ultraprecision CMP for sapphire, GaN, and SiC for advanced optoelectronics materials[J]. Current Applied Physics, 2012, 12: S41-S46. [16] DENG H, HOSOYA K, IMANISHI Y, et al. Electro-chemical mechanical polishing of single-crystal SiC using CeO2 slurry[J]. Electrochemistry Communications, 2015, 52: 5-8. [17] 张 玺, 王 蓉, 张序清, 等. 碳化硅单晶衬底加工技术现状及发展趋势[J]. 中央民族大学学报(自然科学版), 2021, 30(4): 5-12. ZHANG X, WANG R, ZHANG X Q, et al. Research status and development trend of silicon carbide single crystal substrate machining technology[J]. Journal of Minzu University of China (Natural Sciences Edition), 2021, 30(4): 5-12 (in Chinese). |