[1] LI C Y, LU H H, TSAI W S, et al. A 5 m/25 Gbps underwater wireless optical communication system[J]. IEEE Photonics Journal, 2018, 10(3): 7904909. [2] YEH P S, CHANG C C, CHEN Y T, et al. GaN-based vertical-cavity surface emitting lasers with sub-milliamp threshold and small divergence angle[J]. Applied Physics Letters, 2016, 109(24): 241103. [3] YU H C, ZHENG Z W, MEI Y, et al. Progress and prospects of GaN-based VCSEL from near UV to green emission[J]. Progress in Quantum Electronics, 2018, 57: 1-19. [4] COSENDEY G, CASTIGLIA A, ROSSBACH G, et al. Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate[J]. Applied Physics Letters, 2012, 101(15): 151113. [5] MATSUI K, KOZUKA Y, IKEYAMA K, et al. GaN-based vertical cavity surface emitting lasers with periodic gain structures[J]. Japanese Journal of Applied Physics, 2016, 55(5S): 05FJ08. [6] IKEYAMA K, KOZUKA Y, MATSUI K, et al. Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors[J]. Applied Physics Express, 2016, 9(10): 102101. [7] IVE T, BRANDT O, KOSTIAL H, et al. Crack-free and conductive Si-doped AlN/GaN distributed Bragg reflectors grown on 6H-SiC(0001)[J]. Applied Physics Letters, 2004, 85(11): 1970-1972. [8] HUANG G S, LU T C, YAO H H, et al. Crack-free GaN/AlN distributed Bragg reflectors incorporated with GaN/AlN superlattices grown by metalorganic chemical vapor deposition[J]. Applied Physics Letters, 2006, 88(6): 061904-1. [9] KAO C C, PENG Y C, YAO H H, et al. Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN/GaN and Ta2O5/SiO2 distributed Bragg reflector[J]. Applied Physics Letters, 2005, 87(8): 081105. [10] WENG G E, MEI Y, LIU J P, et al. Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers[J]. Optics Express, 2016, 24(14): 15546-15553. [11] KASAHARA D, MORITA D, KOSUGI T, et al. Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature[J]. Applied Physics Express, 2011, 4(7): 072103. [12] LIU W J, HU X L, YING LEI-YING, et al. Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers[J]. Applied Physics Letters, 2014, 104(25): 251116. [13] WU Y P, XIAO Y X, NAVID I, et al. InGaN micro-light-emitting diodes monolithically grown on Si: achieving ultra-stable operation through polarization and strain engineering[J]. Light: Science & Applications, 2022, 11: 294. [14] ALONSO-ORTS M, HÖTZEL R, GRIEB T, et al. Correlative analysis on InGaN/GaN nanowires: structural and optical properties of self-assembled short-period superlattices[J]. Discover Nano, 2023, 18(1): 27. [15] LI C Y, LIU S, LUK T S, et al. Intrinsic polarization control in rectangular GaN nanowire lasers[J]. Nanoscale, 2016, 8(10): 5682-5687. [16] ZUBIA D, HERSEE S D. Nanoheteroepitaxy: the Application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials[J]. Journal of Applied Physics, 1999, 85(9): 6492-6496. [17] LU T C, CHEN S W, WU T T, et al. Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature[J]. Applied Physics Letters, 2010, 97(7): 071114. [18] KATSURAGAWA M, SOTA S, KOMORI M, et al. Thermal ionization energy of Si and Mg in AlGaN[J]. Journal of Crystal Growth, 1998, 189/190(1/2): 528-531. [19] VERZELLESI G, SAGUATTI D, MENEGHINI M, et al. Efficiency droop in InGaN/GaN blue light-emitting diodes: physical mechanisms and remedies[J]. Journal of Applied Physics, 2013, 114(7): 071101. [20] HAN S H, LEE D Y, LEE S J, et al. Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes[J]. Applied Physics Letters, 2009, 94(23): 231123. [21] YANG Y, CAO X A, YAN C H. Investigation of the nonthermal mechanism of efficiency rolloff in InGaN light-emitting diodes[J]. IEEE Transactions on Electron Devices, 2008, 55(7): 1771-1775. [22] MUKAI T, YAMADA M, SHUJINAKAMURA S. Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes[J]. Japanese Journal of Applied Physics, 1999, 38(7A): 3976. [23] 张君华, 贾志刚, 董海亮, 等. AlGaInN/InGaN应变补偿DBR结构设计[J]. 人工晶体学报, 2023, 52(3): 452-459. ZHANG J H, JIA Z G, DONG H L, et al. Design of AlGaInN/InGaN strain-compensation DBR structure[J]. Journal of Synthetic Crystals, 2023, 52(3): 452-459 (in Chinese). [24] LI C K, WU Y R. Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs[J]. IEEE Transactions on Electron Devices, 2012, 59(2): 400-407. [25] HAN L, GAO Y B, HANG S, et al. Impact of p-AlGaN/GaN hole injection layer on GaN-based vertical cavity surface emitting laser diodes[J]. Chinese Optics Letters, 2022, 20(3): 031402. |