JOURNAL OF SYNTHETIC CRYSTALS ›› 2024, Vol. 53 ›› Issue (8): 1394-1408.
• Research Articles • Previous Articles Next Articles
TANG Huazhu, XIAO Qingquan, FU Shasha, XIE Quan
Received:
2024-03-12
Online:
2024-08-15
Published:
2024-08-14
CLC Number:
TANG Huazhu, XIAO Qingquan, FU Shasha, XIE Quan. Simulation on ZnS/SnS Solar Cells with Spiro-OMeTAD as Hole Transport Layer[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1394-1408.
[1] BANERJEE P. Impact of thermally grown ZnS1-xOx buffer layer over the photovoltaic performance of SnS/ZnS heterostructure[J]. Materials Letters, 2022, 320: 132347. [2] REDDY N K, REDDY R K T. Optical behaviour of sprayed tin sulphide thin films[J]. Materials Research Bulletin, 2006, 41(2): 414-422. [3] CHO J Y, SINHA S, GANG M G, et al. Controlled thickness of a chemical-bath-deposited CdS buffer layer for a SnS thin film solar cell with more than 3% efficiency[J]. Journal of Alloys and Compounds, 2019, 796: 160-166. [4] 庄米雪. 铜铟硫半导体薄膜的制备及其在太阳能电池上的应用[D]. 广州: 广东工业大学, 2014. ZHUANG M X. The preparation of copper indium sulfide semiconductor thin films and its application in solar cells[D]. Guangzhou: Guangdong University of Technology, 2014 (in Chinese). [5] ÖZTÜRK H, ASLAN F. Preparation of high-quality SnS thin films for self-powered photodetectors and solar cells using a low-temperature powder technique[J]. Optical Materials, 2022, 131: 112755. [6] LEE N, BANG M, CHOI H, et al. Effect of H2 annealing on SnS thin films grown by thermal evaporation and their transfer characteristics with Ti, W, and Mo electrodes[J]. Thin Solid Films, 2021, 732: 138779. [7] ASLAN F, ARSLAN F, TUMBUL A, et al. Synthesis and characterization of solution processed p-SnS and n-SnS2 thin films: effect of starting chemicals[J]. Optical Materials, 2022, 127: 112270. [8] AREPALLI V K, SHIN Y, KIM J. Photovoltaic behavior of the room temperature grown RF-Sputtered SnS thin films[J]. Optical Materials, 2019, 88: 594-600. [9] ZHAO X Z, DAVIS L M, LOU X B, et al. Study of the crystal structure of SnS thin films by atomic layer deposition[J]. AIP Advances, 2021, 11(3): 035144. [10] MAHDI M S, AL-ARAB H S, HMOOD A, et al. Structure, morphology, and photoresponse characteristics dependence on substrate nature of grown π-SnS films using chemical bath deposition[J]. Optical Materials, 2022, 123: 111910. [11] OGAH O E, REDDY K R, ZOPPI G, et al. Annealing studies and electrical properties of SnS-based solar cells[J]. Thin Solid Films, 2011, 519(21): 7425-7428. [12] GHOSH B, DAS M, BANERJEE P, et al. Fabrication of vacuum-evaporated SnS/CdS heterojunction for PV applications[J]. Solar Energy Materials and Solar Cells, 2008, 92(9): 1099-1104. [13] REDDY R K T, REDDY K N, MILES R W. Photovoltaic properties of SnS based solar cells[J]. Solar Energy Materials and Solar Cells, 2006, 90(18-19): 3041-3046. [14] FERHATI H, DJEFFAL F, ABDELMALEK F. Towards improved efficiency of SnS solar cells using back grooves and strained-SnO2 buffer layer: FDTD and DFT calculations[J]. Journal of Physics and Chemistry of Solids, 2023, 178: 111353. [15] ARULANANTHAM A M S, VALANARASU S, KATHALINGAM A, et al. An investigation on SnS layers for solar cells fabrication with CdS, SnS2 and ZnO window layers prepared by nebulizer spray method[J]. Applied Physics A, 2018, 124(11): 776. [16] PANDEY S, SADANAND, SINGH P K, et al. Numerical studies of optimising various buffer alyers to enhance the performance of tin sulfide (SnS)-based solar cells[J]. Transactions on Electrical and Electronic Materials, 2021, 22(6): 893-903. [17] JIANG F, SHEN H L, JIAO J. Effect of the thickness on the optoelectronic properties of SnS films and photovoltaic performance of SnS/i-a-Si/n-a-Si solar cells[J]. Applied Physics A, 2014, 117(4): 2167-2173. [18] XU J X, YANG Y Z. Study on the performances of SnS heterojunctions by numerical analysis[J]. Energy Conversion and Management, 2014, 78: 260-265. [19] MIYAWAKI T, ICHIMURA M. Fabrication of ZnS thin films by an improved photochemical deposition method and application to ZnS/SnS heterojunction cells[J]. Materials Letters, 2007, 61(25): 4683-4686. [20] QIU K F, XIE Q, QIU D P, et al. Fabrication and simulation of ZnS/p-Si heterojunction solar cells[J]. Materials Letters, 2017, 198: 760-764. [21] ABDALLAH B, ALNAMA K, NASRALLAH F. Deposition of ZnS thin films by electron beam evaporation technique, effect of thickness on the crystallographic and optical properties[J]. Modern Physics Letters B, 2019, 33(4): 1950034. [22] TORRES-RICÁRDEZ R, LIZAMA-TZEC F I, GARCÍA-MENDOZA M F, et al. Electrodeposited stoichiometric zinc sulfide films[J]. Ceramics International, 2020, 46(8): 10490-10494. [23] ATES A, YLDRM M A, KUNDAKC M, et al. Annealing and light effect on optical and electrical properties of ZnS thin films grown with the SILAR method[J]. Materials Science in Semiconductor Processing, 2007, 10(6): 281-286. [24] ZHANG W J, ZHANG Q, ZHANG Y B, et al. CdSe/ZnS quantum-dot light-emitting diodes with spiro-OMeTAD as buffer layer[J]. IEEE Transactions on Electron Devices, 2019, 66(11): 4901-4906. [25] LOU Q, LI H L, HUANG Q S, et al. Multifunctional CNT∶TiO2 additives in spiro-OMeTAD layer for highly efficient and stable perovskite solar cells[J]. EcoMat, 2021, 3(3): e12099. [26] TIWARI P, ALOTAIBI M F, AL-HADEETHI Y, et al. Design and simulation of efficient SnS-based solar cell using spiro-OMeTAD as hole transport Layer[J]. Nanomaterials, 2022, 12(14): 2506. [27] WANG Y P, WANG J, LI H R, et al. wxAMPS theoretical study of the bandgap structure of CZTS thin film to improve the device performance[J]. Optoelectronics Letters, 2021, 17(8): 475-481. [28] LIU Y M, SUN Y, ROCKETT A. A new simulation software of solar cells—wxAMPS[J]. Solar Energy Materials and Solar Cells, 2012, 98: 124-128. [29] YING M, WEN J J, ZHAO Y. Numerical simulation of CuInSe2 solar cells using wxAMPS software[J]. Chinese Journal of Physics, 2022, 76: 24-34. [30] YUAN J R, WANG J S, LIU S Q, et al. Numerical simulation of SnS/CZTSSe heterojunction solar cells[J]. Journal of Ovonic Research, 2023, 19(1): 31-41. [31] XIAO L, WANG G X, YAO J X. Enhanced hole extraction in green energy perovskite solar cell by CuOx/spiro-OMeTAD bilayer with improved performance[J]. IOP Conference Series: Earth and Environmental Science, 2021, 804(3): 032062. [32] HOSSAIN M I, ALHARBI F H, TABET N. Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells[J]. Solar Energy, 2015, 120: 370-380. [33] KEARNEY K L, ROCKETT A A. Simulation of charge transport and recombination across functionalized Si (111) photoelectrodes[J]. Journal of the Electrochemical Society, 2016, 163(7): H598-H604. [34] 陈 超. Zn(O, S)缓冲层薄膜的制备及其在太阳能电池上的应用[D]. 福州: 福州大学, 2016. CHEN C. Preparation of Zn(O, S) buffer layer thin films and their application in solar cells[D]. Fuzhou: Fuzhou University, 2016 (in Chinese). [35] 肖友鹏, 王怀平, 冯 林.硒化亚锗异质结太阳电池模拟研究[J]. 物理学报, 2023, 72(24): 248801. XIAO Y P, WANG H P, Feng L. Numerical simulation of germanium selenide heterojunction solar cell[J]. Acta Physical Sinica, 2023, 72(24): 248801 (in Chinese). [36] GUPTA Y, ARUN P. Optimization of SnS active layer thickness for solar cell application[J]. Journal of Semiconductors, 2017, 38(11): 113001. [37] MARINOVA N, TRESS W, HUMPHRY-BAKER R, et al. Light harvesting and charge recombination in CH3NH3PbI3 perovskite solar cells studied by hole transport layer thickness variation[J]. ACS Nano, 2015, 9(4): 4200-4209. [38] 方 毅, 赵文宁, 韩修训. 吸收层及缓冲层厚度对Cu3BiS3太阳能电池的性能影响[J]. 有色金属科学与工程, 2021, 12(2): 50-55. FANG Y, ZHAO W N, HAN X X. Effects of thickness of absorption layer and buffer layer on the performance of Cu3BiS3 solar cell[J]. Nonferrous Metals Science and Engineering, 2021, 12(2): 50-55 (in Chinese). [39] BHARGAVA R N, GALLAGHER D, HONG X, et al. Optical properties of manganese-doped nanocrystals of ZnS[J]. Physical Review Letters, 1994, 72(3): 416-419. [40] NAZ H, ALI R N, ZHU X Q, et al. Effect of Mo and Ti doping concentration on the structural and optical properties of ZnS nanoparticles[J]. Physica E Low-dimensional Systems and Nanostructures, 2018, 100: 1-6. [41] RAJ C J, PRABAKAR K, KARTHICK S N, et al. Banyan root structured Mg-doped ZnO photoanode dye-sensitized solar cells[J]. The Journal of Physical Chemistry C, 2013, 117(6): 2600-2607. [42] JABEEN U, SHAH S M, HUSSAIN N, et al. Synthesis, characterization, band gap tuning and applications of Cd-doped ZnS nanoparticles in hybrid solar cells[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 325: 29-38. [43] WÜRFEL U, CUEVAS A, WÜRFEL P. Charge carrier separation in solar cells[J]. IEEE Journal of Photovoltaics, 2015, 5(1): 461-469. [44] ALIAGHAYEE M. Optimization of the perovskite solar cell design with layer thickness engineering for improving the photovoltaic response using SCAPS-1D[J]. Journal of Electronic Materials, 2023, 52(4): 2475-2491. [45] LI Y T, WEI L, ZHANG R Z, et al. Annealing effect on Sb2S3-TiO2 nanostructures for solar cell applications[J]. Nanoscale Research Letters, 2013, 8(1): 89. [46] SPALATU N, HIIE J, KAUPMEES R, et al. Postdeposition processing of SnS thin films and solar cells: prospective strategy to obtain large, sintered, and doped SnS grains by recrystallization in the presence of a metal halide flux[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17539-17554. [47] 邹文珍, 张 楚, 蒋洪敏, 等. 过渡金属掺杂在钙钛矿光伏器件中的应用[J]. 激光与光电子学进展, 2023, 60(9): 55-76. ZOU W Z, ZHANG C, JIANG H M, et al. Application of transition metal doping in perovskite photovoltaic devices[J]. Laser & Optoelectronics Progress, 2023, 60(9): 55-76(in Chinese). [48] NAKKA L, CHENG Y H, ABERLE A G, et al. Analytical review of spiro-OMeTAD hole transport materials: paths toward stable and efficient perovskite solar cells[J]. Advanced Energy and Sustainability Research, 2022, 3(8): 2200045. [49] WANG S B, SUN W H, ZHANG M J, et al. Strong electron acceptor additive based spiro-OMeTAD for high-performance and hysteresis-less planar perovskite solar cells[J]. RSC Advances, 2020, 10(64): 38736-38745. [50] CHEN D Y, TSENG W H, LIANG S P, et al. Application of F4TCNQ doped spiro-MeOTAD in high performance solid state dye sensitized solar cells[J]. Physical Chemistry Chemical Physics, 2012, 14(33): 11689-11694. [51] REN G H, HAN W B, DENG Y Y, et al. Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: a review[J]. Journal of Materials Chemistry A, 2021, 9(8): 4589-4625. [52] 肖友鹏, 王怀平. 硫化锑同质结薄膜太阳电池设计与缺陷分析[J]. 光学学报, 2022, 42(23): 2331002. XIAO Y P, WANG H P. Design and defect analysis of Sb2S3 homojunction thin film solar cells[J]. Acta Optica Sinica, 2022, 42(23): 2331002 (in Chinese). [53] 党新志. ZnS及其多层薄膜光电性能与缺陷研究[D]. 武汉: 武汉科技大学, 2023. DANG X Z. Photoelectric properties and defects of ZnS and its multilayer films[D]. Wuhan: Wuhan University of Science and Technology, 2023 (in Chinese). [54] VIDAL J, LANY S, D’AVEZAC M, et al. Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS[J]. Applied Physics Letters, 2012, 100(3): 032104. [55] 赵伟强. 基于SnS的高性能铜锡硫薄膜太阳能电池[D]. 郑州: 河南大学, 2022. ZHAO W Q. SnS based high-performance CTS thin film solar cells[D].Zhengzhou: Henan University, 2022 (in Chinese). [56] 王傲霜, 肖清泉, 陈 豪, 等. GaN/Si单异质结太阳电池的模拟[J]. 光学学报, 2020, 40(24): 2416001. WANG A S, XIAO Q Q, CHEN H, et al. Simulation on GaN/Si single heterojunction solar cells[J]. Acta Optica Sinica, 2020, 40(24): 2416001 (in Chinese). [57] 张柳江, 王晨越, 苏圳煌, 等. 全无机钙钛矿CsPbI2Br与Spiro-OMeTAD界面电子结构的研究[J]. 核技术, 2022, 45(4): 11-18. ZHANG L J, WANG C Y, SU Z H, et al. Study of the interfacial electronic structure at the CsPbI2Br/Spiro-OMeTAD interface[J]. Nuclear Techniques, 2022, 45(4): 11-18 (in Chinese). |
[1] | LIU Shuai, XIONG Huifan, YANG Xia, YANG Deren, PI Xiaodong, SONG Lihui. Effects of Electron Irradiation on Defects of 4H-SiC MOS Materials [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1536-1541. |
[2] | NI Haoran, CHEN Ya, WANG Liguang, RUI Yang, ZHAO Zehui, MA Cheng, LIU Jie, ZHANG Xingmao, ZHAO Yanxiang, YANG Shaolin. Numerical Simulation of the Effect of Heat Shield Structure on Temperature Distribution in Growing 300 mm Semiconductor Grade Monocrystalline Silicon [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1196-1211. |
[3] | SHU Min, LIANG Junhui, CHEN Da, CHEN Zhao, QIN Laishun. Study on the Characteristics of MoO3-x Nanoslot SERS Substrate Prepared by Hydrothermal Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 1061-1068. |
[4] | LIU Hongde, WANG Weiwei, ZHANG Zhongzheng, ZHENG Dahuai, LIU Shiguo, KONG Yongfa, XU Jingjun. Defect Structure of Lithium Niobate Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 355-371. |
[5] | GUO Yu, LIU Chunjun, ZHANG Xinhe, SHEN Pengyuan, ZHANG Bo, LOU Yanfang, PENG Tonghua, YANG Jian. Analysis and Review of Influencing Factors of SiC Homo-Epitaxial Wafers Quality [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 210-217. |
[6] | QIAN Mengxue, ZHANG Zhirong, WANG Huadong, ZHANG Qingli, SUN Yu. Characterization Method for Internal Defects in Laser Crystals Based on Slice Beam Scanning [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 238-245. |
[7] | HAN Jingrui, LI Xiguang, LI Yongmei, WANG Yaohao, ZHANG Qingchun, LI Da, SHI Jianxin, YAN Honglei, HAN Yuebin, TING Hungkit. Preparation and Epitaxy Application of 8 Inch SiC Wafers [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(10): 1712-1719. |
[8] | FU Wenfeng, ZHU Xupeng, LIAO Jun, RU Qiang, XUE Shuwen, ZHANG Jun. Research Progress and Prospect of CZTS-Based Single Crystal Materials [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(1): 12-24. |
[9] | LI Hong, LIAO Xin, HOU Jing, XU Zhong. Interface Defects of Perovskite Solar Cells and Their Suppression Methods [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(1): 38-50. |
[10] | MENG Jiayuan, LI Yi, ZHAO Yuchun, WU Haorong, WANG Xuesong, LUO Wanjun, YU Lan. Enhancing the Electrical Conductivity and Anisotropy of CuCrO2 Ceramics by Mg2+ Doping [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(1): 163-169. |
[11] | XU Zeyao, XIONG Hao, LI Ping, HONG Jinquan, YANG Aijun, JIANG Linqin. Enhancing Performance of Cs3Cu2I5 Perovskite-Based Phosphors and Its Blue LEDs under the Assistance of Amino Acids [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(9): 1681-1690. |
[12] | LI Jianing, GE Xin, HUANG Zixuan, LIU Zhen, WANG Pengyang, SHI Biao, ZHAO Ying, ZHANG Xiaodan. Effect of Sputtered NiOx Modified by Self-Assembled Layer on Performance of Blade-Coated Wide-Bandgap Perovskite Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(8): 1458-1466. |
[13] | WANG Mengmeng, YIN Yanru, DING Xiaoyuan, ZHANG Jing, FU Xiuwei, JIA Zhitai, TAO Xutang. Research Progress of Sesquioxide Crystals and Its Laser Performances in the Band of 1~3 μm [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(7): 1169-1194. |
[14] | WANG Di, TANG Gang, ZHANG Bo, WANG Yongzhe, ZHANG Zhonghan, JIANG Dapeng, KOU Huamin, SU Liangbi. Characterization and Distribution of Dislocation Defects of Nd,Y∶SrF2 Laser Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(7): 1208-1218. |
[15] | SUN Shuai, SONG Huaping, YANG Junwei, WANG Wenjun, QU Hongxia, JIAN Jikang. Optimization of KOH Etching for Single Crystal SiC by Dry Air [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(5): 753-758. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||