[1] FENG X K, CHEN H X, HUANG H Z, et al. A bond-free PPLN thin film ridge waveguide[J]. Optics Laser Technology, 2023, 162: 109298. [2] CHEN J K, GHASRI P, AGUILAR G, et al. An overview of clinical and experimental treatment modalities for port wine stains[J]. Journal of the American Academy of Dermatology, 2012, 67(2): 289-304. [3] INAGAKI K, OHKOSHI K, OHDE S, et al. Comparative efficacy of pure yellow (577-nm) and 810-nm subthreshold micropulse laser photocoagulation combined with yellow (561-577-nm) direct photocoagulation for diabetic macular edema[J]. Japanese Journal of Ophthalmology, 2015, 59(1): 21-28. [4] KAPOOR V, KARPOV V, LINTON C, et al. Solid state yellow and orange lasers for flow cytometry[J]. Cytometry Part A, 2008, 73A(6): 570-577. [5] BETZIG E, PATTERSON G H, SOUGRAT R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793): 1642-1645. [6] 魏俊风,程学武,杨国韬,等.中高层大气激光雷达安全运行天气判别系统[J]. 激光与光电子学进展, 2023, 60(12): 404-410. WEI J F,CHENG X W,YANG G T, et al. Weather identification system for normal running of middle and upper atmosphere lidar[J]. Laser & Optoelectronics Progress, 2023, 60(12): 404-410 (in Chinese). [7] CHIN J C Y, WIZINOWICH P, WETHERELL E, et al. Keck II laser guide star AO system and performance with the TOPTICA/MPBC laser[C]//Adaptive Optics Systems V, SPIE Proceedings. Edinburgh, United Kingdom. SPIE, 2016: 254-272. [8] D'ORGEVILLE C, FETZER G J. Four generations of sodium guide star lasers for adaptive optics in astronomy and space situational awareness[C]//Adaptive Optics Systems V, SPIE Proceedings. Edinburgh, United Kingdom. SPIE, 2016: 236-253. [9] WEI K, LI M, JIANG C C, et al. LGS adaptive optics system with long-pulsed sodium laser on Lijiang 1.8 meter telescope 2014-2016 observation campaign[C]//Adaptive Optics Systems V, SPIE Proceedings. Edinburgh, United Kingdom. SPIE, 2016: 1614-1621. [10] ELLERBROEK B L, ADKINS S M, ANDERSEN D R, et al. TMT adaptive optics program status report[C]//SPIE Proceedings, Adaptive Optics Systems III. Amsterdam, Netherlands. SPIE, 2012: 84471 J. [11] GAO J, DAI X, ZHANG L, et al. All-solid-state continuous-wave yellow laser at 561 nm under in-band pumping[J]. Journal of the Optical Society of America B, 2013, 30(1): 95-98. [12] 马刚飞, 姚文明, 鞠乔俊, 等. 高稳定性低噪声的561 nm黄光激光器[J]. 应用光学, 2017, 38(3): 499-505. MA G F, YAO W M, JU Q J, et al. 561 nm yellow laser with high stability and low noise[J]. Journal of Applied Optics, 2017, 38(3): 499-505 (in Chinese). [13] SONG S, LIN H Y, SHI W J, et al. Small yellow-green Nd∶YAG/PPMgLN laser module at 561.3 nm[J]. Optik, 2021, 232: 166557. [14] GAYER O, SACKS Z, GALUN E, et al. Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3[J]. Applied Physics B, 2008, 91(2): 343-348. [15] MILLER G D, BYER R L. Periodically poled lithium niobate: modeling, fabrication, and nonlinear-optical performance[M]. 1998. [16] MIZUUCHI K, MORIKAWA A, SUGITA T, et al. Electric-field poling in Mg-doped LiNbO3[J]. Journal of Applied Physics, 2004, 96(11): 6585-6590. [17] BUZÁDY A, GÁLOS R, MAKKAI G, et al. Temperature-dependent terahertz time-domain spectroscopy study of Mg-doped stoichiometric lithium niobate[J]. Optical Materials Express, 2020, 10(4): 998. [18] MA L, FENG X K, CHEN H X, et al. Compact yellow-orange Nd∶YVO4/PPMgLN laser at 589 nm[J]. Optoelectronics Letters, 2023, 19(11): 641-645. [19] ZHU P F, LI B, LIU W Q, et al. All-solid-state continuous-wave frequency doubling Nd∶YAG/LBO laser with 8.2 W output power at 660 nm[J]. Optics and Spectroscopy, 2012, 113(5): 560-564. [20] 邵志强, 高兰兰, 张 辰. 全固态561 nm倍频激光器研究[J]. 激光与光电子学进展, 2013, 50(3): 031401. SHAO Z Q, GAO L L, ZHANG C. Research on 561 nm frequency-double all-solid-state laser[J]. Laser & Optoelectronics Progress, 2013, 50(3): 031401 (in Chinese). [21] 倪明心, 杨 敏, 曲大鹏, 等. 561 nm全固态单纵模激光器[J]. 激光与红外, 2016, 46(6): 680-683. NI M X, YANG M, QU D P, et al. All solid-state 561 nm single longitudinal mode laser[J]. Laser & Infrared, 2016, 46(6): 680-683 (in Chinese). |