[1] DASHTIAN K, SHAHSAVARIFAR S, USMAN M, et al. A comprehensive review on advances in polyoxometalate based materials for electrochemical water splitting[J]. Coordination Chemistry Reviews, 2024, 504: 215644-215676. [2] WANG Z M, XIN X, ZHANG M, et al. Recent advances of mixed-transition-metal-substituted polyoxometalates[J]. Science China Chemistry, 2022, 65(8): 1515-1525. [3] WU H C, ZHI M N, SINGH V, et al. Elucidating white light emissions in Tm3+/Dy3+ codoped polyoxometalates: a color tuning and energy transfer mechanism study[J]. Dalton Transactions, 2018, 47(39): 13949-13956. [4] 刘晓慧, 李 慧, 徐 娜. 还原型磷钼酸盐构筑的多酸基超分子化合物的合成及电催化性能研究[J]. 人工晶体学报, 2023, 52(11): 2034-2040. LIU X H, LI H, XU N. Synthesis and electrocatalytic performance of a polyoxometalate-based supramolecular compound constructed with reduced phosphomolybdate[J]. Journal of Synthetic Crystals, 2023, 52(11): 2034-2040 (in Chinese). [5] LIU X J, MA X, ZHANG J, et al. Synthesis, structure, and spectroscopic characterization of a 2-D organic-inorganic hybrid CuII-ErIII heterometallic arsenotungstate[J]. Arabian Journal of Chemistry, 2019, 12(8): 1925-1933. [6] LIU J C, WANG J F, HAN Q, et al. Multicomponent self-assembly of a giant heterometallic polyoxotungstate supercluster with antitumor activity[J]. Angewandte Chemie, 2021, 60(20): 11153-11157. [7] SONG N Z, LU M Y, LIU J C, et al. A giant heterometallic polyoxometalate nanocluster for enhanced brain-targeted glioma therapy[J]. Angewandte Chemie, 2024, 63(10): e202319700-e202319708. [8] 孙佳馨, 李 爽, 李晓慧, 等. 3-(3-吡啶)丙烯酸配体杂化的Keggin型多酸基超分子化合物的合成、结构及光催化性能[J]. 人工晶体学报, 2023, 52(8): 1485-1490. SUN J X, LI S, LI X H, et al. Synthesis, structure and photocatalytic properties of a Keggin-type polyoxometalate-based supramolecular complex hybridized by 3-pyridineacrylic acid ligand[J]. Journal of Synthetic Crystals, 2023, 52(8): 1485-1490 (in Chinese). [9] 王静怡, 张 众, 王梓兰, 等. 吡啶鎓盐配体构筑的多钼酸基配合物的合成、结构及光催化性能[J]. 人工晶体学报, 2022, 51(7): 1227-1232. WANG J Y, ZHANG Z, WANG Z L, et al. Synthesis, structure and photocatalytic properties of polymolybdate-based complex constructed by pyridinium ligand[J]. Journal of Synthetic Crystals, 2022, 51(7): 1227-1232 (in Chinese). [10] LIU J C, HAN Q, CHEN L J, et al. A brief review of the crucial progress on heterometallic polyoxotungstates in the past decade[J]. CrystEngComm, 2016, 18(6): 842-862. [11] SUNADA Y, YAMAGUCHI K, SUZUKI K. “Template synthesis” of discrete metal clusters with two- or three-dimensional architectures[J]. Coordination Chemistry Reviews, 2022, 469: 214673-214701. [12] KAPURWAN S, SAHU P K, RAIZADA M, et al. [α-AsW9O33]9- bridged hexagonal clusters of Ln(III) showing field induced SMM behavior: experimental and theoretical insight[J]. Dalton Transactions, 2023, 52(27): 9377-9388. [13] CUI K Y, LI F Y, XU L, et al. Lanthanide-tungstobismuthate clusters based on[BiW9O33]9- building units: synthesis, crystal structures, luminescent and magnetic properties[J]. Dalton Transactions, 2012, 41(16): 4871-4877. [14] YANG L, LI L, GUO J P, et al. A nanosized gly-decorated praseodymium-stabilized selenotungstate cluster: synthesis, structure, and oxidation catalysis[J]. Chemistry, an Asian Journal, 2017, 12(18): 2441-2446. [15] LI S Z, WANG Y, MA P T, et al. From a versatile arsenotungstate precursor to a large lanthanide-containing polyoxometalate-carboxylate hybrid[J]. CrystEngComm, 2014, 16(47): 10746-10749. [16] CHEN W L, LI Y G, WANG Y H, et al. Building block approach to nanostructures: step-by-step assembly of large lanthanide-containing polytungstoarsenate aggregates[J]. Dalton Transactions, 2007(38): 4293-4301. [17] RITCHIE C, SPELDRICH M, GABLE R W, et al. Utilizing the adaptive polyoxometalate [As2W19O67(H2O)]14- to support a polynuclear lanthanoid-based single-molecule magnet[J]. Inorganic Chemistry, 2011, 50(15): 7004-7014. [18] BROWN I D, ALTERMATT D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database[J]. Acta Crystallographica Section B Structural Science, 1985, 41(4): 244-247. [19] LIU W T, THORP H H. Bond valence sum analysis of metal-ligand bond lengths in metalloenzymes and model complexes. 2. Refined distances and other enzymes[J]. Inorganic Chemistry, 1993, 32(19): 4102-4105. [20] YANG L, LIU Q S, MA P T, et al. A CO2-3-containing, dimanganese-substituted silicotungstate trimer, K9[H14{SiW10MnIIMnIIIO38}3(CO3)]·39H2O[J]. Dalton Transactions, 2015, 44(30): 13469-13472. [21] HUSSAIN F, GABLE R W, SPELDRICH M, et al. Polyoxotungstate-encapsulated Gd6 and Yb10 complexes[J]. Chemical Communications, 2009(3): 328-330. [22] LI J, SHANG S X, LIN Z G, et al. Assembly of lanthanide-containing tungstotellurates(VI): syntheses, structures, and catalytic properties[J]. Frontiers in Chemistry, 2020, 8: 598961-598971. [23] SHI D, SHANG S S, CHEN L J, et al. Three novel 2D organic-inorganic hybrid CuII-LnIII heterometallic arsenotungstates[J]. Synthetic Metals. 2012;162(11-12):1030-1036. [24] AN H Y, HU Y, WANG L, et al. 3D racemic microporous frameworks and 3D chiral supramolecular architectures based on Evans-Showell-type polyoxometalates controlled by the temperature[J]. Crystal Growth & Design, 2015, 15(1): 164-175. [25] ZHANG C J, FU X, MA H Y, et al. A Ag-La heterometallic 2D layer based on mono-lacunary Keggin polyoxometalate: synthesis, structure, and photocatalytic property[J]. Solid State Sciences, 2017, 73: 36-40. |