[1] ZHAI P L, XIA M Y, WU Y Z, et al. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting[J]. Nature Communications, 2021, 12(1): 4587. [2] NIU Z Q, LU Z K, QIAO Z L, et al. Robust Ru-VO2 bifunctional catalysts for all-pH overall water splitting[J]. Advanced Materials, 2024, 36(9): 2310690. [3] LIU R, SUN M Z, LIU X J, et al. Enhanced metal-support interactions boost the electrocatalytic water splitting of supported ruthenium nanoparticles on a Ni3 N/NiO heterojunction at industrial current density[J]. Angewandte Chemie International Edition, 2023, 62(46): e202312644. [4] XU W L, ZHAO R, LI Q Q, et al. Overall water splitting on the NiS/NiS2 heterostructures featuring self-equilibrium orbital occupancy[J]. Advanced Energy Materials, 2023, 13(31): 2300978. [5] TURNER J A. Sustainable hydrogen production[J]. Science, 2004, 305(5686): 972-974. [6] YANG Y J, YU Y H, LI J, et al. Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction[J]. Nano-Micro Letters, 2021, 13(1): 160. [7] LIN X L, CHEN D L, QIU X Q, et al. Lignin-metal supramolecular framework strategy of self-healing carbon-coated CoRu alloy nanocatalyst for efficient overall water splitting[J]. Advanced Energy Materials, 2024, 14(32): 2303442. [8] YANG Y Y, ZHU C M, ZHANG Y, et al. Construction of Co3O4/Fe2O3 nanosheets on nickel foam as efficient electrocatalyst for the oxygen evolution reaction[J]. Journal of Physics and Chemistry of Solids, 2021, 148: 109680. [9] CHENG C C, TING Y C, YEN F Y, et al. Synergistic Mo and W single atoms co-doped surface hydroxylated NiFe oxide as bifunctional electrocatalysts for overall water splitting[J]. Applied Catalysis B: Environment and Energy, 2024, 358: 124356. [10] GUO X Y, LI J X, MENG F Z, et al. Ru nanoparticles modified Ni3Se4/Ni(OH)2 heterostructure nanosheets: a fast kinetics boosted bifunctional overall water splitting electrocatalyst[J]. Journal of Colloid and Interface Science, 2024, 663: 847-855. [11] WU C, LI J H. Unique hierarchical Mo2C/C nanosheet hybrids as active electrocatalyst for hydrogen evolution reaction[J]. ACS Applied Materials & Interfaces, 2017, 9(47): 41314-41322. [12] MIAO M, PAN J, HE T, et al. Molybdenum carbide-based electrocatalysts for hydrogen evolution reaction[J]. Chemistry- A European Journal, 2017, 23(46): 10947-10961. [13] TERAYAMA Y, HAJI T, FURUKAWA S, et al. Carbon black/PTFE composite hydrophobic gas diffusion layers for a water-absorbing porous electrolyte electrolysis cell[J]. International Journal of Hydrogen Energy, 2018, 43(4): 2018-2025. [14] 米芳芳, 王庆涛. 碳化钼电解水析氢催化剂的性能调控研究进展[J]. 材料科学与工程学报, 2022, 40(3): 520-527. MI F F, WANG Q T. Research progress on performance control of molybdenum carbide electrolytic water hydrogen evolution catalysts[J]. Journal of Materials Science and Engineering, 2022, 40(3): 520-527 (in Chinese). [15] WANG K, ZHOU J H, SUN M Z, et al. Cu-doped heterointerfaced Ru/RuSe2 nanosheets with optimized H and H2O adsorption boost hydrogen evolution catalysis[J]. Advanced Materials, 2023, 35(23): 2300980. [16] ZHUANG W C, DU M L, LU X H, et al. Fe doping modifying electronic structure of NiSe2 for boosting electrocatalytic oxygen evolution reaction[J]. Ionics, 2023, 29(3): 1069-1076. [17] HAN N N, LUO S W, DENG C W, et al. Defect-rich FeN0.023/Mo2C heterostructure as a highly efficient bifunctional catalyst for overall water-splitting[J]. ACS Applied Materials & Interfaces, 2021, 13(7): 8306-8314. [18] ZHANG L, WEI K, MA J M, et al. Coupled Sn/Mo2C nanoparticles wrapped in carbon nanofibers by electrospinning as high-performance electrocatalyst for hydrogen evolution reaction[J]. Applied Surface Science, 2021, 566: 150754. [19] XU Z X, JIN S, SEO M H, et al. Hierarchical Ni-Mo2C/N-doped carbon Mott-Schottky array for water electrolysis[J]. Applied Catalysis B: Environmental, 2021, 292: 120168. [20] SALAH A, REN H D, AL-ANSI N, et al. Ru/Mo2C@NC Schottky junction-loaded hollow nanospheres as an efficient hydrogen evolution electrocatalyst[J]. Journal of Materials Chemistry A, 2021, 9(36): 20518-20529. [21] LIN X L, LIU J L, QIU X Q, et al. Ru-FeNi alloy heterojunctions on lignin-derived carbon as bifunctional electrocatalysts for efficient overall water splitting[J]. Angewandte Chemie International Edition, 2023, 62(33): e202306333. [22] GAO M Y, YANG C, ZHANG Q B, et al. Electrochemical fabrication of porous Ni-Cu alloy nanosheets with high catalytic activity for hydrogen evolution[J]. Electrochimica Acta, 2016, 215: 609-616. [23] LI Q, LIANG C L, LU X F, et al. Ni@NiO core-shell nanoparticle tube arrays with enhanced supercapacitor performance[J]. Journal of Materials Chemistry A, 2015, 3(12): 6432-6439. [24] ZHANG J Y, QIAN J M, RAN J Q, et al. Engineering lower coordination atoms onto NiO/Co3O4 heterointerfaces for boosting oxygen evolution reactions[J]. ACS Catalysis, 2020, 10(21): 12376-12384. |