[1] MONROY E, OMN S F, CALLE F. Wide-bandgap semiconductor ultraviolet photodetectors[J]. Semiconductor Science and Technology, 2003, 18(4): R33-R51. [2] PEARTON S J, YANG J C, CARY P H IV, et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 2018, 5(1): 011301. [3] CHENG L, YANG J Y, ZHENG W. Bandgap, mobility, dielectric constant, and Baliga’s figure of merit of 4H-SiC, GaN, and β-Ga2O3 from 300 to 620 K[J]. ACS Applied Electronic Materials, 2022, 4(8): 4140-4145. [4] SALTIN J, TIAN S, DING F, et al. Novel doping engineering techniques for gallium oxide MOSFET to achieve high drive current and breakdown voltage[C/OL]//2019 IEEE 7th Workshop on Wide Bandgap Power Devices and Applications (WiPDA). Raleigh, NC, USA: IEEE, 2019: 261-264. [5] IRMSCHER K, GALAZKA Z, PIETSCH M, et al. Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method[J]. Journal of Applied Physics, 2011, 110(6): 063720. [6] ROY R, HILL V G, OSBORN E F. Polymorphism of Ga2O3 and the system Ga2O3-H2O[J]. Journal of the American Chemical Society, 1952, 74(3): 719-722. [7] TADJER M J, ALEMA F, OSINSKY A, et al. Characterization of beta-Ga2O3 homoepitaxial films and MOSFETs grown by MOCVD at high growth rates[J]. Journal of Physics D: Applied Physics, 2021, 54, 034005. [8] YAO Y, OKUR S, LYLE L A M, et al. Growth and characterization of α-, β-, and ε-phases of Ga2O3 using MOCVD and HVPE techniques[J]. Materials Research Letters, 2018, 6(5): 268-275. [9] HU Y L, FU Z B, YUAN R H, et al. Effect of point defects on electrochemical performances of α-Ga2O3 microrods prepared with hydrothermal process for supercapacitor application[J]. Journal of Materials Science: Materials in Electronics, 2024, 35(2): 184. [10] ZHANG Z, YAN P, SONG Q, et al. Recent progress of Ga2O3 materials and devices based on the low-cost, vacuum-free mist-CVD epitaxial growth method[J]. Fundamental Research, 2024, 4(5): 1292-1305. [11] SHINOHARA D, FUJITA S. Heteroepitaxy of corundum-structured α-Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition[J]. Japanese Journal of Applied Physics, 2008, 47(9R): 7311. [12] UNO K, OHTA M, TANAKA I. Growth mechanism of α-Ga2O3 on a sapphire substrate by mist chemical vapor deposition using acetylacetonated gallium source solutions[J]. Applied Physics Letters, 2020, 117(5): 052106. [13] MA T C, CHEN X H, REN F F, et al. Heteroepitaxial growth of thick α on sapphire (0001) by mist-CVD technique[J]. Journal of Semiconductors, 2019, 40(1): 012804. [14] WERNBERG A A, GYSLING H J. MOCVD deposition of epitaxial lithium niobate, LiNbO3, thin films using the single source precursor lithium niobium ethoxide, LiNb(OEt)6[J]. Chemistry of Materials, 1993, 5(8): 1056-1058. [15] HOU X H, SUN H D, LONG S B, et al. Ultrahigh-performance solar-blind photodetector based on α-phase-dominated Ga2O3 film with record low dark current of 81 fA[J]. IEEE Electron Device Letters, 2019, 40(9): 1483-1486. [16] LIU Z, WANG X, LIU Y, et al. A high-performance ultraviolet solar-blind photodetector based on a β-Ga2O3 Schottky photodiode[J]. Journal of Materials Chemistry C, 2019, 7(44): 13920-13929. [17] CAI Y, ZHANG K, FENG Q, et al. Tin-assisted growth of ε-Ga2O3 film and the fabrication of photodetectors on sapphire substrate by PLD[J]. Optical Materials Express, 2018, 8(11): 3506. [18] KAWAHARAMURA T, DANG G T, FURUTA M. Successful growth of conductive highly crystalline Sn-doped α-Ga2O3 thin films by fine-channel mist chemical vapor deposition[J]. Japanese Journal of Applied Physics, 2012, 51(4R): 040207. [19] LIU H Y, HUANG Z Y. Bandgap engineering of AlxZn1-xO deposited by mist chemical vapor deposition for photodetector applications: from UV-A to UV-C[J]. IEEE Transactions on Electron Devices, 2022, 69(12): 6843-6850. [20] LIU H Y, WU N Z, WU Y T, et al. Effects of doping concentration on photoresponse characteristics of β-Ga2O3 solar-blind photodetectors[J]. IEEE Sensors Journal, 2024, 24(3): 2717-2725. [21] YAO S, LIU Z, ZHANG M, et al. Photogain-enhanced signal-to-noise performance of a polycrystalline Sn∶Ga2O3 UV detector via impurity-level transition and multiple carrier transport[J]. ACS Applied Electronic Materials, 2023: acsaelm.3c01371 [22] YAO Y, YAO S, YUAN J, et al. Self-powered PEDOT∶PSS/Sn∶α-Ga2O3 heterojunction UV photodetector via organic/inorganic hybrid ink engineering[J]. Journal of Semiconductors, 2024, 45(12), 122402. [23] XU Y, AN Z Y, ZHANG L X, et al. Solar blind deep ultraviolet β-Ga2O3 photodetectors grown on sapphire by the mist-CVD method[J]. Optical Materials Express, 2018, 8(9): 2941. [24] PARK S Y, HA M T, KIM K H, et al. Enhanced thickness uniformity of large-scale α-Ga2O3 epilayers grown by vertical hot-wall mist chemical vapor deposition[J]. Ceramics International, 2022, 48(4): 5075-5082. [25] GANGULY S, NAMA MANJUNATHA K, PAUL S. Investigation on the mist intensity to deposit gallium oxide thin films by mist chemical vapor deposition[J]. Physica Status Solidi (RRL) -Rapid Research Letters, 2024, 18(2): 2300296. [26] CHO S H, SHIN Y J, JEONG S M, et al. Two-step growth of κ-Ga2O3 thin films on 4H-SiC substrates with temperature-varied buffer layers using mist chemical vapor deposition[J]. Japanese Journal of Applied Physics, 2023, 62(1): 015508. [27] TAKANE H, ARAKI T, TANAKA K. Influence of HCl concentration in source solution and growth temperature on formation of α-Ga2O3 film via mist-CVD process[J]. Japanese Journal of Applied Physics, 2023, 62: SF1024. [28] XI Z Y, YAN S H, LIU Z, et al. Tunable Ga2O3 solar-blind photosensing performance via thermal reorder engineering and energy-band modulation[J]. Nanotechnology, 2024, 35(9): 095204. [29] KIM K H, HA M T, KWON Y J, et al. Growth of 2-inch α-Ga2O3 epilayers via rear-flow-controlled mist chemical vapor deposition[J]. ECS Journal of Solid State Science and Technology, 2019, 8(7): Q3165-Q3170. [30] KAWAHARAMURA T. Physics on development of open-air atmospheric pressure thin film fabrication technique using mist droplets: control of precursor flow[J]. Japanese Journal of Applied Physics, 2014, 53(5S1): 05FF08. [31] TAUC J, GRIGOROVICI R, VANCU A. Optical properties and electronic structure of amorphous germanium[J]. Physica Status Solidi (b), 1966, 15(2): 627-637. [32] KANEKO K, UNO K, JINNO R, et al. Prospects for phase engineering of semi-stable Ga2O3 semiconductor thin films using mist chemical vapor deposition[J]. Journal of Applied Physics, 2022, 131(9): 090902. [33] PATTERSON A L. The scherrer formula for X-ray particle size determination[J]. Physical Review, 1939, 56(10): 978-982. [34] DONG L P, JIA R X, XIN B, et al. Effects of oxygen vacancies on the structural and optical properties of β-Ga2O3[J]. Scientific Reports, 2017, 7: 40160. [35] LIPINSKA-KALITA K E, CHEN B, KRUGER M B, et al. High-pressure X-ray diffraction studies of the nanostructured transparent vitroceramic medium K2O-SiO2-Ga2O3[J]. Physical Review B, 2003, 68(3): 035209. [36] GOU A Q, CHENG Y, ZHU F H, et al. Study on oxygen vacancies in gallium oxide nanostructures[J]. Journal of Materials Science: Materials in Electronics, 2023, 34(12): 1052. [37] GARRIDO J A, MONROY E, IZPURA I, et al. Photoconductive gain modelling of GaN photodetectors[J]. Semiconductor Science and Technology, 1998, 13(6): 563-568. [38] LIU Z, DU L, ZHANG S H, et al. Synergetic effect of photoconductive gain and persistent photocurrent in a high-photoresponse Ga2O3 deep-ultraviolet photodetector[J]. IEEE Transactions on Electron Devices, 2022, 69(10): 5595-5602. [39] GONG X, TONG M H, XIA Y J, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm[J]. Science, 2009, 325(5948): 1665-1667. [40] CHEN X H, REN F F, GU S L, et al. Review of gallium-oxide-based solar-blind ultraviolet photodetectors[J]. Photonics Research, 2019, 7(4): 381. [41] LIU Z, TANG W H. A review of Ga2O3 deep-ultraviolet metal-semiconductor Schottky photodiodes[J]. Journal of Physics D: Applied Physics, 2023, 56(9): 093002. [42] UCHIDA T, KANEKO K, FUJITA S. Electrical characterization of Si-doped n-type α-Ga2O3 on sapphire substrates[J]. MRS Advances, 2018, 3(3): 171-177. [43] SUN X Y, CHEN X H, HAO J G, et al. A self-powered solar-blind photodetector based on polyaniline/α-Ga2O3 p-n heterojunction[J]. Applied Physics Letters, 2021, 119(14): 141601. [44] MUAZZAM U U, CHAVAN P, RAGHAVAN S, et al. Optical properties of mist CVD grown α-Ga2O3[J]. IEEE Photonics Technology Letters, 2020, 32(7): 422-425. [45] XU Y, CHENG Y L, LI Z, et al. Ultrahigh-performance solar-blind photodetectors based on high quality heteroepitaxial single crystalline β-Ga2O3 film grown by vacuumfree, low-cost mist chemical vapor deposition[J]. Advanced Materials Technologies, 2021, 6(6): 2001296. |