JOURNAL OF SYNTHETIC CRYSTALS ›› 2021, Vol. 50 ›› Issue (4): 716-723.
Special Issue: 纪念蒋民华先生逝世10周年
• Reviews • Previous Articles Next Articles
LI Qingyun1, ZHU Houbin1, ZHANG Honghu1, ZHANG Xiuquan2, HU Hui1
Received:
2021-03-09
Online:
2021-04-15
Published:
2021-05-21
CLC Number:
LI Qingyun, ZHU Houbin, ZHANG Honghu, ZHANG Xiuquan, HU Hui. Single-Crystal Lithium Niobate Thin Films[J]. Journal of Synthetic Crystals, 2021, 50(4): 716-723.
[1] SCHMIDT R V, KAMINOW I P. Metal-diffused optical waveguides in LiNbO3[J]. Applied Physics Letters, 1974, 25(8): 458-460. [2] BORTZ M L, FEJER M M. Annealed proton-exchanged LiNbO3 waveguides[J]. Optics Letters, 1991, 16(23): 1844-1846. [3] JACKEL J L, RICE C E, VESELKA J J. Proton exchange for high-index waveguides in LiNbO3[J]. Applied Physics Letters, 1982, 41(7): 607-608. [4] CHEN F. Photonic guiding structures in lithium niobate crystals produced by energetic ion beams[J]. Journal of Applied Physics, 2009, 106(8): 081101. [5] NAKATA Y, GUNJI S, OKADA T, et al. Fabrication of LiNbO3 thin films by pulsed laser deposition and investigation of nonlinear properties[J]. Applied Physics A, 2004, 79(4/5/6): 1279-1282. [6] YOON J G, KIM K. Growth of highly textured LiNbO3 thin film on Si with MgO buffer layer through the sol-gel process[J]. Applied Physics Letters, 1996, 68(18): 2523-2525. [7] LANSIAUX X, DOGHECHE E, REMIENS D, et al. LiNbO3 thick films grown on sapphire by using a multistep sputtering process[J]. Journal of Applied Physics, 2001, 90(10): 5274-5277. [8] SAKASHITA Y, SEGAWA H. Preparation and characterization of LiNbO3thin films produced by chemical-vapor deposition[J]. Journal of Applied Physics, 1995, 77(11): 5995-5999. [9] BRUEL M. Silicon on insulator material technology[J]. Electronics Letters, 1995, 31(14): 1201. [10] LEVY M, OSGOOD R M Jr, LIU R, et al. Fabrication of single-crystal lithium niobate films by crystal ion slicing[J]. Applied Physics Letters, 1998, 73(16): 2293-2295. [11] RABIEI P, GUNTER P. Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding[J]. Applied Physics Letters, 2004, 85(20): 4603-4605. [12] DJUKIC D, CERDA-PONS G, ROTH R M, et al. Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate[J]. Applied Physics Letters, 2007, 90(17): 171116. [13] WANG T J, CHU C H, LIN C Y. Electro-optically tunable microring resonators on lithium niobate[J]. Optics Letters, 2007, 32(19): 2777-2779. [14] RAMADAN T A, LEVY M, OSGOOD R M Jr. Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films[J]. Applied Physics Letters, 2000, 76(11): 1407-1409. [15] ROTH R M, DJUKIC D, LEE Y S, et al. Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation[J]. Applied Physics Letters, 2006, 89(11): 112906. [16] LI X J, TERABE K, HATANO H, et al. Domain patterning thin crystalline ferroelectric film with focused ion beam for nonlinear photonic integrated circuits[J]. Journal of Applied Physics, 2006, 100(10): 106103. [17] POBERAJ G, HU H, SOHLER W, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices[J]. Laser & Photonics Reviews, 2012, 6(4): 488-503. [18] 韩黄璞.单晶铌酸锂薄膜的结构和属性研究[D].济南:山东大学,2016:34-52. HAN H P. Structure and properties of single crystal LiNbO3 thin films[D]. Jinan: Shandong University, 2016: 34-52(in Chinese). [19] SUBBARAMAN H, XU X C, HOSSEINI A, et al. Recent advances in silicon-based passive and active optical interconnects[J]. Optics Express, 2015, 23(3): 2487-2511. [20] KOMLJENOVIC T, DAVENPORT M, HULME J, et al. Heterogeneous silicon photonic integrated circuits[J]. Journal of Lightwave Technology, 2016, 34(1): 20-35. [21] TROIA B, PENADES J S, QU Z B, et al. Silicon ring resonator-coupled Mach-Zehnder interferometers for the Fano resonance in the mid-IR[J]. Applied Optics, 2017, 56(31): 8769-8776. [22] LEE Y S, KIM G D, KIM W J, et al. Hybrid Si-LiNbO3 microring electro-optically tunable resonators for active photonic devices[J]. Optics Letters, 2011, 36(7): 1119-1121. [23] CHEN L, CHEN J H, NAGY J, et al. Highly linear ring modulator from hybrid silicon and lithium niobate[J]. Optics Express, 2015, 23(10): 13255-13264. [24] WEIGEL P O, SAVANIER M, DEROSE C T, et al. Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics[J]. Sci Rep, 2016, 6: 22301. [25] WANG Y W, CHEN Z H, CAI L T, et al. Amorphous silicon-lithium niobate thin film strip-loaded waveguides[J]. Optical Materials Express, 2017, 7(11): 4018-4028. [26] CAI L, KONG R, WANG Y, et al. Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film[J]. Optics Express, 2015, 23(22): 29211-29221. [27] CAI L T, WANG Y W, HU H. Low-loss waveguides in a single-crystal lithium niobate thin film[J]. Optics Letters, 2015, 40(13): 3013-3016. [28] LUO R, HE Y, LIANG H X, et al. Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation[J]. Laser & Photonics Reviews, 2019, 13(3): 1800288. [29] LI S, CAI L T, WANG Y W, et al. Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe[J]. Optics Express, 2015, 23(19): 24212-24219. [30] 王羿文.铌酸锂单晶薄膜上加载条型波导和集成光学器件的研究[D].济南:山东大学,2019:62-67. WANG Y W. Study on loaded strip waveguides and integrated optical devices on LiNbO3 single crystal films[D]. Jinan: Shandong University, 2019: 62-67(in Chinese). [31] JIN S L, XU L T, ZHANG H H, et al. LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides[J]. IEEE Photonics Technology Letters, 2016, 28(7): 736-739. [32] RAO A, MALINOWSKI M, HONARDOOST A, et al. Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon[J]. Optics Express, 2016, 24(26): 29941-29947. [33] CHANG L, PFEIFFER M H P, VOLET N, et al. Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon[J]. Optics Letters, 2017, 42(4): 803-806. [34] RABIEI P, MA J, KHAN S, et al. Heterogeneous lithium niobate photonics on silicon substrates[J]. Optics Express, 2013, 21(21): 25573-25581. [35] RAO A, PATIL A, CHILES J, et al. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon[J]. Optics Express, 2015, 23(17): 22746-22752. [36] CHEN L, WOOD M G, REANO R M. 12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes[J]. Optics Express, 2013, 21(22): 27003-27010. [37] ZHANG M, WANG C, CHENG R, et al. Monolithic ultra-high-Q lithium niobate microring resonator[J]. Optica, 2017, 4(12): 1536-1537. [38] WANG M, WU R B, LIN J T, et al. Chemo-mechanical Polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator[J]. Quantum Engineering, 2019, 1(1): e9. [39] KANG S T, ZHANG R, HAO Z Z, et al. High-efficiency chirped grating couplers on lithium niobate on insulator[J]. Optics Letters, 2020, 45(24): 6651-6654. [40] HE L Y, HE L Y, ZHANG M, et al. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits[J]. Optics Letters, 2019, 44(9): 2314-2317. [41] YONEKURA K, JIN L H, TAKIZAWA K. Measurement of dispersion of effective electro-optic Coefficients γE13 and γE33 of non-doped congruent LiNbO3Crystal[J]. Japanese Journal of Applied Physics, 2008, 47(7): 5503-5508. [42] CAI L, KANG Y, HU H. Electric-optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film[J]. Optics Express, 2016, 24(5): 4640-4647. [43] MERCANTE A J, SHI S Y, YAO P, et al. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth[J]. Optics Express, 2018, 26(11): 14810-14816. [44] REN T H, ZHANG M, WANG C, et al. An integrated low-voltage broadband lithium niobate phase modulator[J]. IEEE Photonics Technology Letters, 2019, 31(11): 889-892. [45] MERCANTE A J, YAO P, SHI S Y, et al. 110 GHz CMOS compatible thin film LiNbO3 modulator on silicon[J]. Optics Express, 2016, 24(14): 15590-15595. [46] WANG C, ZHANG M, CHEN X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562(7725): 101-104. [47] XU M, HE M, ZHANG H, et al. High-performance coherent optical modulators based on thin-film lithium niobate platform[J]. Nature Communications, 2020, 11(1): 3911. [48] WANG C, ZHANG M, STERN B, et al. Nanophotonic lithium niobate electro-optic modulators[J]. Optics Express, 2018, 26(2): 1547-1555. [49] LIN J T, YAO N, HAO Z Z, et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator[J]. Physical Review Letters, 2019, 122(17): 173903. [50] YU M J, DESIATOV B, OKAWACHI Y, et al. Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides[J]. Optics Letters, 2019, 44(5): 1222-1225. [51] ZHANG M, WANG C, HU Y W, et al. Electronically programmable photonic molecule[J]. Nature Photonics, 2019, 13(1): 36-40. [52] LIN J, XU Y, FANG Z, et al. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining for second harmonic generation[J]. 2015: STh3M.3. [53] WANG J, BO F, WAN S, et al. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation[J]. Optics Express, 2015, 23(18): 23072-23078. [54] JIANG W C, LIN Q. Chip-scale cavity optomechanics in lithium niobate[J]. Scientific Reports, 2016, 6: 36920. [55] YE X N, LIU S J, CHEN Y P, et al. Sum-frequency generation in lithium-niobate-on-insulator microdisk via modal phase matching[J]. Optics Letters, 2020, 45(2): 523-526. [56] SASAGAWA K, TSUCHIYA M. Highly efficient third harmonic generation in a periodically poled MgO:LiNbO3disk resonator[J]. Applied Physics Express, 2009, 2(12): 122401. [57] LIU S J, LIU S J, ZHENG Y L, et al. Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk[J]. 2018: NpTh1C.3. [58] GAINUTDINOV R V, VOLK T R, ZHANG H H. Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3 films on SiO2/LiNbO3 substrates[J]. Applied Physics Letters, 2015, 107(16): 162903. [59] MACKWITZ P, RÜSING M, BERTH G, et al. Periodic domain inversion in x-cut single-crystal lithium niobate thin film[J]. Applied Physics Letters, 2016, 108(15): 152902. [60] LU J J, SURYA J B, LIU X W, et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W[J]. Optica, 2019, 6(12): 1455-1460. [61] SHAO L B, YU M J, MAITY S, et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators[J]. Optica, 2019, 6(12): 1498. [62] SARABALIS C J, MCKENNA T P, PATEL R N, et al. Acousto-optic modulation in lithium niobate on sapphire[J]. APL Photonics, 2020, 5(8): 086104. [63] ZHU D, SHAO L B, YU M J, et al. Integrated photonics on thin-film lithium niobate[EB/OL]. 2102.11956[physics.optics]. https: //arxiv.org/abs/2102.11956. |
[1] | WU Rui, HU Yang, TANG Rongfen, YANG Qian, WANG Xu, WU Yiyi, NIE Dengpan, WANG Huanjiang. Study of Gas-Phase Parasitic Reaction Pathways for ZnO Thin Film Grown by MOCVD [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1608-1619. |
[2] | MA Cuiping, CHEN Jiaying, CHEN Huaixi, LIANG Wanguo, WU Qiulin, FENG Xinkai. Study on Fiber End-Face Coupled Periodically Poled Lithium Niobate (PPLN) Thin Film Waveguide Device [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1319-1325. |
[3] | ZHONG Qiongli, WANG Xu, MA Kui, YANG Fashun. Effect of Al Doping on the Optical Properties of β-Ga2O3 Thin Films [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1352-1360. |
[4] | LI Haoqing, SU Yu. Phase Field Study on Domain Structure Evolution of BaTiO3 Nano Single Crystal Thin Films under Applied Electric Field [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1136-1149. |
[5] | ZHANG Qingwen, SHAN Dongming, ZHANG Hu, DING Ran. Research Progress on Preparation of Organic-Inorganic Hybrid Lead Halide Perovskite Single-Crystalline Thin-Films by Solution-Processed Space-Confined Method and Their Device Applications [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 572-584. |
[6] | SUN Xinghan, LI Jihu, ZHANG Wei, ZENG Qunfeng, ZHANG Junfeng. Research Progress on Material Removal Non-Uniformity in Silicon Carbide Chemical Mechanical Polishing [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 585-599. |
[7] | CHEN Zheming, DING Yuchong, ZOU Shaohong, LONG Yong, SHI Zibin, MA Jinyi. Study on Bonding Technology of Silicon-Based Lithium Tantalate Heterogeneous Wafers [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 634-640. |
[8] | LIU Hongde, WANG Weiwei, ZHANG Zhongzheng, ZHENG Dahuai, LIU Shiguo, KONG Yongfa, XU Jingjun. Defect Structure of Lithium Niobate Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 355-371. |
[9] | LIN Jintian, GAO Renhong, GUAN Jianglin, LI Chuntao, YAO Ni, CHENG Ya. Advances in Low-Loss Thin-Film Lithium Niobate Photonic Integrated Devices [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 372-394. |
[10] | ZHANG Yuchen, LI Sanbing, XU Jingjun, ZHANG Guoquan. Conductive Domain Wall and Its Applications in Lithium Niobate [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 395-409. |
[11] | XIE Hanrong, YANG Tiefeng, WEI Yuming, GUAN Heyuan, LU Huihui. Recent Research Progress of Thin film Lithium Niobate Photodetector [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 410-425. |
[12] | YE Zhilin, LI Shifeng, CUI Guoxin, YIN Zhijun, WANG Xuebin, ZHAO Gang, HU Xiaopeng, ZHU Shining. Fabrication and Characterization of Wafer-Scale Thin-Film Lithium Niobate Waveguides [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 426-433. |
[13] | SUN Dehui, HAN Wenbin, LI Chenzhe, PENG Liguo, LIU Hong. Growth of 8-Inch Lithium Niobate Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 434-440. |
[14] | HE Yuxuan, WU Jiangwei, CHEN Yuping, CHEN Xianfeng. Study on Fabrication of Erbium-Doped Lithium Niobate Thin Film Based on Low Temperature Ion Exchange Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 441-448. |
[15] | LIU Qilu, ZHENG Mingyang, GAO Yang, ZHANG Longxi, SONG Yukun, WANG Fulei, LIU Hong, WANG Dongzhou, SANG Yuanhua. Poling Electric Field Uniformization Design Regulates the Duty Cycle of Periodically Poled Lithium Niobate [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 449-457. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||