[1] HARRISON R W, LEE W E. Processing and properties of ZrC, ZrN and ZrCN ceramics: a review[J]. Advances in Applied Ceramics, 2016, 115(5): 294-307. [2] ÖSTLING M, NYGREN S, PETERSSON C S, et al. Reactively sputtered ZrN used as an Al/Si diffusion barrier in a Zr contact to silicon[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1984, 2(2): 281-283. [3] SPILLMANN H, WILLMOTT P R, MORSTEIN M, et al. ZrN, ZrxAlyN and ZrxGayN thin films: novel materials for hard coatings grown using pulsed laser deposition[J]. Applied Physics A, 2001, 73(4): 441-450. [4] RUAN J L, LII D F, LU H H, et al. Microstructural and electrical characteristics of reactively sputtered ZrNx thin films[J]. Journal of Alloys and Compounds, 2009, 478(1/2): 671-675. [5] TAKEYAMA M B, ITOI T, AOYAGI E, et al. High performance of thin nano-crystalline ZrN diffusion barriers in Cu/Si contact systems[J]. Applied Surface Science, 2002, 190(1/2/3/4): 450-454. [6] LIU Y X, NABATAME T, NGUYEN N, et al. Channel shape and interpoly dielectric material effects on electrical characteristics of floating-gate-type three-dimensional fin channel flash memories[J]. Japanese Journal of Applied Physics, 2015, 54(4S): 04DD04. [7] VOSS L F, STAFFORD L, KHANNA R, et al. Ohmic contacts to p-type GaN based on TaN, TiN, and ZrN[J]. Applied Physics Letters, 2007, 90(21): 212107. [8] SCHLEUSSNER S, KUBART T, TÖRNDAHL T, et al. Reactively sputtered ZrN for application as reflecting back contact in Cu(In, Ga)Se2 solar cells[J]. Thin Solid Films, 2009, 517(18): 5548-5552. [9] BOLTASSEVA A. Empowering plasmonics and metamaterials technology with new material platforms[J]. MRS Bulletin, 2014, 39(5): 461-468. [10] LIN S C, ZHANG J, ZHU R H, et al. Effects of sputtering pressure on microstructure and mechanical properties of ZrN films deposited by magnetron sputtering[J]. Materials Research Bulletin, 2018, 105: 231-236. [11] LU H P, RAN Y J, ZHAO S J, et al. Effects of assisting ions on the structural and plasmonic properties of ZrNx thin films[J]. Journal of Physics D: Applied Physics, 2019, 52(24): 245102. [12] BHATTACHARYA S, MO K, MEI Z G, et al. Improving stability of ALD ZrN thin film coatings over U-Mo dispersion fuel[J]. Applied Surface Science, 2020, 533: 147378. [13] BANERJEE M, SRINIVASAN N B, ZHU H Z, et al. Fabrication of ZrO2 and ZrN films by metalorganic chemical vapor deposition employing new Zr precursors[J]. Crystal Growth & Design, 2012, 12(10): 5079-5089. [14] GU C Y, SUI Z P, LI Y X, et al. The growth of the metallic ZrNx thin films on P-GaN substrate by pulsed laser deposition[J]. Applied Surface Science, 2018, 433: 306-311. [15] YAO Q, LIU W, CUI W B, et al. Growth mechanism and magnetic properties for the out-of-plane-oriented Nd-Fe-B films[J]. Journal of Materials Research, 2009, 24(9): 2802-2812. [16] BIRKHOLZ M, GENZEL C, JUNG T. X-ray diffraction study on residual stress and preferred orientation in thin titanium films subjected to a high ion flux during deposition[J]. Journal of Applied Physics, 2004, 96(12): 7202-7211. [17] KE Y E, CHEN Y I. Effects of nitrogen flow ratio on structures, bonding characteristics, and mechanical properties of ZrNx films[J]. Coatings, 2020, 10(5): 476. [18] MAHIEU S, GHEKIERE P, DEPLA D, et al. Biaxial alignment in sputter deposited thin films[J]. Thin Solid Films, 2006, 515(4): 1229-1249. [19] MAHIEU S, GHEKIERE P, DE WINTER G, et al. Mechanism of preferential orientation in sputter deposited titanium nitride and yttria-stabilized zirconia layers[J]. Journal of Crystal Growth, 2005, 279(1/2): 100-109. [20] CRACIUN D, VASILE B S, LAMBERS E, et al. Microstructural investigations of 800 keV Ar ions irradiated nanocrystalline ZrN thin films[J]. Surface Engineering, 2020, 36(3): 326-333. [21] OH U C, JE J H. Effects of strain energy on the preferred orientation of TiN thin films[J]. Journal of Applied Physics, 1993, 74(3): 1692-1696. [22] ABADIAS G. Stress and preferred orientation in nitride-based PVD coatings[J]. Surface and Coatings Technology, 2008, 202(11): 2223-2235. [23] MAHMOOD K, BASHIR S, FAIZAN-UL-HAQ, et al. Surface, structural, electrical and mechanical modifications of pulsed laser deposited ZrN thin films by implantation of MeV carbon ions[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 2019, 448: 61-69. [24] SHANMUGAN S, MUTHARASU D. Effect of Ar+ ion irradiation on structural and optical properties of e-beam evaporated cadmium telluride thin films[J]. Materials Science in Semiconductor Processing, 2010, 13(4): 298-302. [25] UL-HAMID A. Microstructure, properties and applications of Zr-carbide, Zr-nitride and Zr-carbonitride coatings: a review[J]. Materials Advances, 2020, 1(5): 1012-1037. [26] 刘志文,谷建峰,孙成伟,等.磁控溅射ZnO薄膜的成核机制及表面形貌演化动力学研究[J].物理学报,2006,55(4):1965-1973. LIU Z W, GU J F, SUN C W, et al. Study on nucleation and dynamic scaling of morphological evolution of ZnO film deposition by reactive magnetron sputtering[J]. Acta Physica Sinica, 2006, 55(4): 1965-1973(in Chinese). [27] MAREUS R, MASTAIL C, ANGAY F, et al. Study of columnar growth, texture development and wettability of reactively sputter-deposited TiN, ZrN and HfN thin films at glancing angle incidence[J]. Surface and Coatings Technology, 2020, 399: 126130. [28] MUSTAPHA N, FEKKAI Z. Impact of nitrogen reactive gas and substrate temperature on the optical, electrical and structural properties of sputtered TiN thin films[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(22): 20009-20021. [29] PATSALAS P, LOGOTHETIDIS S. Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films[J]. Journal of Applied Physics, 2001, 90(9): 4725-4734. [30] CHO J S, BAEK S, PARK S H, et al. Effect of nanotextured back reflectors on light trapping in flexible silicon thin-film solar cells[J]. Solar Energy Materials and Solar Cells, 2012, 102: 50-57. [31] XU Z L, XU X P, CUI C C. Optical functional film with triangular pyramidal texture for crystalline silicon solar cells[J]. Solar Energy, 2020, 201: 45-54. [32] ABDULLAH M F, ALGHOUL M A, NASER H, et al. Research and development efforts on texturization to reduce the optical losses at front surface of silicon solar cell[J]. Renewable and Sustainable Energy Reviews, 2016, 66: 380-398. [33] RAWAL S K, CHAWLA A K, CHAWLA V, et al. Effect of ambient gas on structural and optical properties of titanium oxynitride films[J]. Applied Surface Science, 2010, 256(13): 4129-4135. [34] CHAWLA A K, SINGHAL S, GUPTA H O, et al. Effect of sputtering gas on structural and optical properties of nanocrystalline tungsten oxide films[J]. Thin Solid Films, 2008, 517(3): 1042-1046 |