JOURNAL OF SYNTHETIC CRYSTALS ›› 2021, Vol. 50 ›› Issue (9): 1603-1624.
• Invited • Next Articles
WANG Tao, JIA Zhitai, LI Yang, ZHANG Jian, TAO Xutang
Received:
2021-08-07
Online:
2021-09-15
Published:
2021-10-15
[1] WANG T, ZHANG J, ZHANG N, et al. Single crystal fibers: diversified functional crystal material[J]. Advanced Fiber Materials, 2019, 1(3/4): 163-187. [2] 原东升,贾志泰,舒 骏,等.微下拉晶体光纤生长设备研制及YAG单晶生长[J].人工晶体学报,2014,43(6):1317-1322. YUAN D S, JIA Z T, SHU J, et al. Development of micro-pulling-down equipment for crystal fiber growth and YAG single crystal growth[J]. Journal of Synthetic Crystals, 2014, 43(6): 1317-1322(in Chinese). [3] ANDRADE D C. The flow in metals under large constant stresses[J]. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character, 1914, 90(619): 329-342. [4] CZOCHRALSKI J. A new method for the measurement of the crystallization rate of metals[J]. Zeitschrift Für Physikalische Chemie, 1918, 92: 219-221. [5] GOMPERZ E V. Untersuchungen an einkristalldrähten[J]. Zeitschrift Für Physik, 1922, 8(1): 184-190. [6] 张中晗,戴 云,王阳啸,等.单晶光纤的生长技术与应用研究[J].量子电子学报,2021,38(2):192-213+130. ZHANG Z H, DAI Y, WANG Y X, et al. Crystal growth techniques and applications of single-crystal fibers[J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 192-213+130(in Chinese). [7] 魏艳龙,王 高,王兴起,等.铱铑合金超声导波方法的固体火箭发动机燃烧室温度测试[J].推进技术,2018,39(8):1856-1862. WEI Y L, WANG G, WANG X Q, et al. IrRth40 thermometry combustion chamber temperature measurement for solid rocket motor[J]. Journal of Propulsion Technology, 2018, 39(8): 1856-1862(in Chinese). [8] 王 涛,张 健,张 娜,等.单晶光纤制备及单晶光纤激光器研究进展[J].激光与光电子学进展,2019,56(17):170611. WANG T, ZHANG J, ZHANG N, et al. Research progress in preparation of single crystal fiber and fiber lasers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170611(in Chinese). [9] ZHANG Y B, PICKRELL G R, QI B, et al. Single-crystal sapphire-based optical high-temperature sensor for harsh environments[C]//2004: 157-164. [10] XU S Y, WANG Z H, GUI L J. Contact mode thermal sensors for ultrahigh-temperature region of 2000-3500 K[J]. Rare Metals, 2019, 38(8): 713-720. [11] WERNER M R, FAHRNER W R. Review on materials, microsensors, systems and devices for high-temperature and harsh-environment applications[J]. IEEE Transactions on Industrial Electronics, 2001, 48(2): 249-257. [12] SHI R, NING L X, HUANG Y, et al. Li4SrCa(SiO4)2∶Eu2+: a potential temperature sensor with unique optical thermometric properties[J]. ACS Applied Materials & Interfaces, 2019, 11(10): 9691-9695. [13] HOLMSTEN M, IVARSSON J, FALK R, et al. Inhomogeneity measurements of long thermocouples using a short movable heating zone[J]. International Journal of Thermophysics, 2008, 29(3): 915-925. [14] BENTLEY R. Thermocouple materials and their properties[R]. CSIRO Technical Report, 1988. [15] WANG T, ZHANG J, YANG L, et al. Fabrication and sensitivity optimization of garnet crystal-fiber ultrasonic temperature sensor[J]. Journal of Materials Chemistry C, 2020, 8(11): 3830-3837. [16] WANG Y, JIA Y, CHEN Q S, et al. A passive wireless temperature sensor for harsh environment applications[J]. Sensors, 2008, 8(12): 7982-7995. [17] CHEN H, BURIC M, OHODNICKI P R, et al. Review and perspective: sapphire optical fiber cladding development for harsh environment sensing[J]. Applied Physics Reviews, 2018, 5(1): 011102. [18] WEI Y L, LIANG H J, WANG G, et al. Ultrasonic thermometric measurement system for solid rocket combustion chambers[J]. Ultrasonics, 2021, 113: 106361. [19] YAN A D, CHEN R Z, ZAGHLOUL M, et al. Sapphire fiber optical hydrogen sensors for high-temperature environments[J]. IEEE Photonics Technology Letters, 2016, 28(1): 47-50. [20] CHORPENING B, BURIC M, LIU B, et al. Progress toward multipoint high temperature sensing with sapphire optical fiber for power generation[J]. NETL, 2018. [21] YAN A D, CHEN R Z, POOLE Z L, et al. Fiber optical chemical sensors rated for 800 ℃ operation[C]. 2015 Conference on Lasers and Electro-Optics(CLEO): STh4O.3. [22] ANDREETA M R B, HERNANDES A C. Laser-heated pedestal growth of oxide fibers[M]//Springer Handbook of Crystal Growth. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 393-432. [23] 王楠楠,王 高,李仰军,等.新型激光加热基座生长法生长氧化锆单晶光纤[J].激光技术,2012,36(1):19-21. WANG N N, WANG G, LI Y J, et al. Zirconia single crystal fiber generation based on new laser heating pedestal growth[J]. Laser Technology, 2012, 36(1): 19-21(in Chinese). [24] 顾菊观,沈永行,陈曙英,等.LHPG法单晶光纤生长中的熔区控制技术[J].材料科学与工程,2001,19(4):20-23. GU J G, SHEN Y H, CHEN S Y, et al. Molten zone controlling technique of single crystal fiber by means of LHPG growth[J]. Materials Science and Engineering, 2001, 19(4): 20-23(in Chinese). [25] RUDOLPH P, FUKUDA T. Fiber crystal growth from the melt[J]. Crystal Research and Technology, 1999, 34(1): 3-40. [26] GASSON D B, COCKAYNE B. Oxide crystal growth using gas lasers[J]. Journal of Materials Science, 1970, 5(2): 100-104. [27] HAGGERTY J S. Production of fibers by a floating zone fiber drawing technique[R]. US: US Gov.Public, 1972. [28] FEJER M, BYER R L, FEIGELSON R, et al. Growth and characterization of single crystal refractory oxide fibers[C]//Proc SPIE 0320, Advances in Infrared Fibers Ⅱ, 1982, 0320: 50-55. [29] FEIGELSON R S. The laser-heated pedestal growth method: a powerful tool in the search for new high performance laser crystals[M]//Tunable Solid State Lasers. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985: 129-142. [30] FEJER M M, MAGEL G A, BYER R L. High-speed high-resolution fiber diameter variation measurement system[J]. Applied Optics, 1985, 24(15): 2362-2368. [31] UDA S, TILLER W A. The influence of an interface electric field on the distribution coefficient of chromium in LiNbO3[J]. Journal of Crystal Growth, 1992, 121(1/2): 93-110. [32] SUGIYAMA Y, HATAKEYAMA I, YOKOHAMA I. Growth of a-axis strontium barium niobate single crystal fibers[J]. Journal of Crystal Growth, 1993, 134(3/4): 255-265. [33] PHOMSAKHA V, CHANG R S F, DJEU N. Novel implementation of laser heated pedestal growth for the rapid drawing of sapphire fibers[J]. Review of Scientific Instruments, 1994, 65(12): 3860-3861. [34] YOKOO A, TOMARU S, YOKOHAMA I, et al. A new growth method for long rod-like organic nonlinear optical crystals with phase-matched direction[J]. Journal of Crystal Growth, 1995, 156(3): 279-284. [35] IMAI T, YAGI S, SUGIYAMA Y, et al. Growth of potassium tantalate niobate single crystal fibers by the laser-heated pedestal growth method assisted by a crystal cooling technique[J]. Journal of Crystal Growth, 1995, 147(3/4): 350-354. [36] BRÜCK E, GELDERS H J, HARRISON B J, et al. Laser-heated fibre pedestal growth under UHV conditions[J]. Journal of Crystal Growth, 1996, 166(1/2/3/4): 394-397. [37] NUBLING R K, HARRINGTON J A. Optical properties of single-crystal sapphire fibers[J]. Applied Optics, 1997, 36(24): 5934-5940. [38] MATSUKURA M, CHEN Z M, ADACHI M, et al. Growth of potassium lithium niobate single-crystal fibers by the laser-heated pedestal growth method[J]. Japanese Journal of Applied Physics, 1997, 36(Part 1, No. 9B): 5947-5949. [39] REYES ARDILA D, ANDREETA J P, RIBEIRO C T M, et al. Improved laser-heated pedestal growth system for crystal growth in medium and high isostatic pressure environment[J]. Review of Scientific Instruments, 1999, 70(12): 4606-4608. [40] ARDILA D R, BARBOSA L B, ANDREETA J P. Bifocal spherical mirror for laser processing[J]. Review of Scientific Instruments, 2001, 72(12): 4415-4418. [41] LAVERSENNE L, GUYOT Y, GOUTAUDIER C, et al. Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3 and monoclinic Gd2O3[J]. Optical Materials, 2001, 16(4): 475-483. [42] ANDREETA M R B, ANDREETA E R M, HERNANDES A C, et al. Thermal gradient control at the solid-liquid interface in the laser-heated pedestal growth technique[J]. Journal of Crystal Growth, 2002, 234(4): 759-761. [43] ANDREETA M R B, CARASCHI L C, HERNANDES A C. Automatic diameter control system applied to the laser heated pedestal growth technique[J]. Materials Research, 2003, 6(1): 107-110. [44] LO C Y, HUANG K Y, CHEN J C, et al. Double-clad Cr4+∶YAG crystal fiber amplifier[J]. Optics Letters, 2005, 30(2): 129-131. [45] NIE C D, BERA S, HARRINGTON J A. Growth of single-crystal YAG fiber optics[J]. Optics Express, 2016, 24(14): 15522. [46] BURIC M, YIP M J, CHORPENING B, et al. Laser heated pedestal growth system commissioning and fiber processing[C]//SPIE Commercial+Scientific Sensing and Imaging. Proc SPIE 9852, Fiber Optic Sensors and Applications XIII, Baltimore, Maryland, USA. 2016, 9852: 985219. [47] KIM W, BAYYA S, SHAW L B, et al. Crystal fiber lasers[C]//SPIE Optical Engineering+Applications. Proc SPIE 10382, Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications Ⅺ, San Diego, California, USA. 2017, 1038: 103820Q. [48] PROKOFIEV V V, ANDREETA J P, DE LIMA C J, et al. Growth of single-crystal photorefractive fibers of Bi12SiO20 and Bi12TiO20 by the laser-heated pedestal growth method[J]. Journal of Crystal Growth, 1994, 137(3/4): 528-534. [49] BURIC M, LIU B, THAPA J, et al. Single-crystal fiber structures for harsh environment applications (Rising Researcher Presentation)[C]//SPIE Commercial+Scientific Sensing and Imaging. Proc SPIE 10654, Fiber Optic Sensors and Applications XV, Orlando, Florida, USA. 2018, 1065: 106540 N. [50] BERA S, NIE C D, SOSKIND M G, et al. Growth and lasing of single crystal YAG fibers with different Ho3+ concentrations[J]. Optical Materials, 2018, 75: 44-48. [51] BERA S, NIE C D, HARRINGTON J A. Growth of coilable yttrium aluminum garnet single crystal fibers with low loss and tailored rare-earth dopant concentration, using laser heated pedestal growth technique[C]. Advanced Solid State Lasers, 2017. [52] MAXWELL G, PONTING B, GEBREMICHAEL E, et al. Advances in single-crystal fibers and thin rods grown by laser heated pedestal growth[J]. Crystals, 2017, 7(1): 12. [53] MAXWELL G, PONTING B, SOLEIMANI N, et al. Single-crystal fibers for higher-power lasers[J]. SPIE Newsroom, 2014. DOI:10.1117/2.1201401.005298. [54] KIM W, SHAW B, BAYYA S, et al. Cladded single crystal fibers for high power fiber lasers[C]//SPIE Optical Engineering + Applications. Proc SPIE 9958, Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications X, San Diego, California, USA. 2016, 9958: 99580O. [55] SHAW L B, ASKINS C, KIM W, et al. Cladding pumped single crystal Yb∶YAG fiber amplifier[C]. Advance Solid State Lasers, 2015. [56] DUBINSKII M, ZHANG J, FROMZEL V, et al. Low-loss ‘crystalline-core/crystalline-clad’ (C4) fibers for highly power scalable high efficiency fiber lasers[J]. Optics Express, 2018, 26(4): 5092-5101. [57] BURIC M P, LIU B, BERA S, et al. Fabrication and on-line evaluation of single crystal fiber via laser-heated pedestal growth[C]//Fiber Optic Sensors and Applications XVI. April 14-18, 2019. Baltimore, USA. SPIE, 2019. [58] LIU B, BURIC M, WUENSCHELL J, et al. Optical properties and long-term stability of unclad single crystal sapphire fiber in harsh environments[C]//SPIE OPTO. Proc SPIE 10914, Optical Components and Materials XVI, San Francisco, California, USA. 2019, 1091: 109140Z. [59] ACKERMANN H, KIM W, FLOREA C, et al., Single crystal fibers for high power lasers[C]//High-Power Lasers 2012: Technology and Systems, 2012. [60] KIM W, BAYYA S, SHAW B, et al. Hydrothermally cladded crystalline fibers for laser applications[J]. Optical Materials Express, 2019, 9(6): 2716-2728. [61] MAXWELL G, SOLEIMANI N, PONTING B, et al. Coilable single crystal fibers of doped-YAG for high power laser applications[C]//SPIE Defense, Security, and Sensing. Proc SPIE 8733, Laser Technology for Defense and Security Ⅸ, Baltimore, Maryland, USA. 2013, 8733: 87330T. [62] KIM W, FLOREA C, BAKER C, et al. Single crystal fibers for high power lasers[C]//SPIE Security + Defence. Proc SPIE 8547, High-Power Lasers 2012: Technology and Systems, Edinburgh, United Kingdom. 2012, 8547: 85470K. [63] GUZIK M, PEJCHAL J, YOSHIKAWA A, et al. Structural investigations of Lu2O3 as single crystal and polycrystalline transparent ceramic[J]. Crystal Growth & Design, 2014, 14(7): 3327-3334. [64] MAO T C, CHEN J C, HU C C. Characterization of the growth mechanism of YIG crystal fibers using the laser heated pedestal growth method[J]. Journal of Crystal Growth, 2005, 282(1/2): 143-151. [65] ROMERO J J, MONTOYA E, BAUSÁ L E, et al. Multiwavelength laser action of Nd3+∶YAlO3 single crystals grown by the laser heated pedestal growth method[J]. Optical Materials, 2004, 24(4): 643-650. [66] ROMERO J J, ANDREETA M R B, ANDREETA E R M, et al. Growth and characterization of Nd-doped SBN single crystal fibers[J]. Applied Physics A, 2004, 78(7): 1037-1042. [67] ITO M, HRAIECH S, GOUTAUDIER C, et al. Growth of Yb3+-doped KY3F10 concentration gradient crystal fiber by laser-heated pedestal growth (LHPG) technique[J]. Journal of Crystal Growth, 2008, 310(1): 140-144. [68] JIANG Y J, GUO R Y, BHALLA A S. Growth and dielectric properties of Ta2O5 single crystals grown by laser heated pedestal growth technique[J]. Chinese Journal of Lasers, 2008, 35(11): 1710-1712. [69] FARHI H, LEBBOU K, BELKAHLA S, et al. Fiber single crystal growth by LHPG technique and optical characterization of Ce3+-doped Lu2SiO5[J]. Optical Materials, 2008, 30(9): 1461-1467. [70] PHILIPPEN J, GUGUSCHEV C, KLIMM D. Single crystal fiber growth of cerium doped strontium yttrate, SrY2O4∶Ce3+[J]. Journal of Crystal Growth, 2017, 459: 17-22. [71] SILVA M S, JESUS L M, BARBOSA L B, et al. Crucibleless crystal growth and Radioluminescence study of calcium tungstate single crystal fiber[J]. Optical Materials, 2014, 37: 51-54. [72] BOULON G, ITO M, GOUTAUDIER C, et al. Advances in growth of fiber crystal by the LHPG technique. Application to the optimization of Yb3+-doped CaF2 laser crystals[J]. Journal of Crystal Growth, 2006, 292(2): 230-235. [73] YOSHIKAWA A, BOULON G, LAVERSENNE L, et al. Growth and spectroscopic analysis of Yb3+-doped Y3Al5O12 fiber single crystals[J]. Journal of Applied Physics, 2003, 94(9): 5479-5488. [74] CHEN C Y, CHEN J C, CHIA C T. Growth and optical properties of different compositions of LiNbO3 single crystal fibers[J]. Optical Materials, 2007, 30(3): 393-398. [75] HUANG C H, CHEN J C, HU C. YVO4 single-crystal fiber growth by the LHPG method[J]. Journal of Crystal Growth, 2000, 211(1/2/3/4): 237-241. [76] FERRARI C R, DE CAMARGO A S S, NUNES L A O, et al. Laser heated pedestal growth and optical characterization of CaTa2O6 single crystal fiber[J]. Journal of Crystal Growth, 2004, 266(4): 475-480. [77] ANDREETA M R B, ANDREETA E R M, HERNANDES A C. Laser-heated pedestal growth of colorless LaAlO3 single crystal fiber[J]. Journal of Crystal Growth, 2005, 275(1/2): e757-e761. [78] WANG D H, HOU W T, LI N, et al. Defects and optical property of single-crystal sapphire fibers grown by edge-defined film-fed growth method[J]. Journal of Inorganic Materials, 2020, 35(9): 1053. [79] 穆文祥.β-Ga2O3单晶的生长、加工及性能研究[D].济南:山东大学,2018. MU W X. Study on the single crystal growth, process and properties of β-Ga2O3[D]. Jinan: Shandong University, 2018(in Chinese). [80] LABELLE H E Jr. Growth of controlled profile crystals from the melt: part Ⅱ -edge-defined, film-fed growth (EFG)[J]. Materials Research Bulletin, 1971, 6(7): 581-589. [81] KURLOV V N, STRYUKOV D O, SHIKUNOVA I A. Growth of sapphire and oxide eutectic fibers by the EFG technique[J]. Journal of Physics: Conference Series, 2016, 673: 012017. [82] KATYBA G M, MELIKYANTS D G, CHERNOMYRDIN N V, et al. Terahertz transmission-mode scanning-probe near-field optical microscopy based on a flexible step-index sapphire fiber[C]//2021: 082010. [83] KIM K, CULLEN G, BERKMAN S, et al. Silicon sheet growth by the Inverted Stepanov Technique[R]. Quarterly report No. 1, March 22, 1976-June 30, 1976, RCA Labs., Princeton, NJ (USA), 1976. [84] 原东升.微下拉设备研制、单晶生长及功能晶体TbCOB的制备和性能研究[D].济南:山东大学,2016. YUAN D S. Equipment development and single crystal growth of micro-pulling-down, and the synthesis and investigations of functional crystal TbCOB[D]. Jinan: Shandong University, 2016(in Chinese). [85] FUKUDA T, CHANI V I. Shaped crystals[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. [86] WANG A Y, ZHANG J, YE S, et al. Optimized growth and laser application of Yb∶LuAG single-crystal fibers by micro-pulling-down technique[J]. Crystals, 2021, 11(2): 78. [87] WU B Y, NIE H K, WANG A Y, et al. Factors influencing optical uniformity of YAG single-crystal fiber grown by micro-pulling-down technology[J]. CrystEngComm, 2019, 21(45): 6929-6934. [88] YOKOTA Y, SATO M, TOTA K, et al. Growth of shape-controlled Ca3NbGa3Si2O14 and Sr3NbGa3Si2O14 single crystals by micro-pulling-down method and their physical properties[J]. Japanese Journal of Applied Physics, 2011, 50(9S2): 09ND03. [89] VEBER P, BARTOSIEWICZ K, DEBRAY J, et al. Lead-free piezoelectric crystals grown by the micro-pulling down technique in the BaTiO3-CaTiO3-BaZrO3 system[J]. CrystEngComm, 2019, 21(25): 3844-3853. [90] PIRZIO F, JUN S, TACCHINI S, et al. Multi-watt amplification in a birefringent Yb∶LiLuF4 single crystal fiber grown by micro-pulling-down[J]. Optics Letters, 2019, 44(17): 4095-4098. [91] DE MORAES J R, BALDOCHI S L, SOARES L D R L, et al. Growth, structural and optical characterizations of LiLa(1-x)Eux(WO4)2 single-crystalline fibers by the micro-pulling-down method[J]. Materials Research Bulletin, 2012, 47(3): 744-749. [92] FANG H S, YAN Z W, BOURRET-COURCHESNE E D. Numerical study of the micro-pulling-down process for sapphire fiber crystal growth[J]. Crystal Growth & Design, 2011, 11(1): 121-129. [93] LEBBOU K. Single crystals fiber technology design. Where we are today?[J]. Optical Materials, 2017, 63: 13-18. [94] 丁祖昌,陈继勤.宝石单晶光纤与高温光纤测温计[J].高技术通讯,1992,2(6):27-30. DING Z C, CHEN J Q. Single crystal sapphire fiber and high temperature optical fiber thermometer[J]. High Technology Letters, 1992, 2(6): 27-30(in Chinese). [95] 余 四,叶林华,陈继勤,等.Ti3+∶Al2O3单晶光纤的生长[J].人工晶体学报,1991,20(Z1):333. YU S, YE L H, CHEN J Q, et al. Growth of Ti3+∶Al2O3 single crystal fibers[J]. Journal of Synthetic Crystals, 1991, 20(Z1): 333(in Chinese). [96] 卢子宏,陈继勤,陈溪芳,等.单晶光纤生长中的直径波动[J].硅酸盐学报,1990,18(3):262-267. LU Z H, CHEN J Q, CHEN X F, et al. The diameter fluctuation in the growth of single crystal fibers[J]. Journal of the Chinese Ceramic Society, 1990, 18(3): 262-267(in Chinese). [97] ZHAO Y G, WANG L, CHEN W D, et al. 35 W continuous-wave Ho∶YAG single-crystal fiber laser[J]. High Power Laser Science and Engineering, 2020, 8: e25. DOI:10.1017/hpl.2020.25. [98] DAI Y, ZHANG Z H, WANG Y X, et al. Growth of Tm∶Lu3Al5O12 single crystal fiber from transparent ceramics by laser-heated pedestal method and its spectral properties[J]. Optical Materials, 2021, 111: 110674. [99] YANG Y L, YE L H, BAO R J, et al. Growth and characterization of Yb∶Ho∶YAG single crystal fiber[J]. Infrared Physics & Technology, 2018, 91: 85-89. [100] WANG N N, WANG X L, HU X H, et al. 41.8 W output power, 200 kHz repetition rate ultra-fast laser based on Yb∶YAG single crystal fiber(SCF)amplifier[J]. Optics & Laser Technology, 2020, 127: 106202. [101] LIU J, DONG J F, ZHAO Y G, et al. Tm∶YAG single-crystal fiber laser[J]. Optics Letters, 2021. DOI:10.1364/ol.434618. [102] WANG Y X, WANG S Z, WANG J Y, et al. High-efficiency ~μm CW laser operation of LD-pumped Tm3+∶CaF2 single-crystal fibers[J]. Optics Express, 2020, 28(5): 6684. [103] LIU J, DONG J F, WANG Y Y, et al. Laser operation of Tm∶LuAG single-crystal fiber grown by the micro-pulling down method[J]. Crystals, 2021, 11(8): 898. [104] 王 高,徐兆勇,周汉昌.基于蓝宝石光纤传感器的瞬态高温测试及校准技术[J].光电子·激光,2005,16(4):441-443. WANG G, XU Z Y, ZHOU H C. Transient high temperature measurement based on sapphire fiber sensor and calibration technology[J]. Journal of Optoelectronicslaser, 2005, 16(4): 441-443(in Chinese). [105] DILS R R. High-temperature optical fiber thermometer[J]. Journal of Applied Physics, 1983, 54(3): 1198-1201. [106] 庞拂飞,王之凤,刘奂奂,等.蓝宝石光纤及其高温传感器[J].光子学报, 2019, 48(11): 1148004. PANG F F, WANG Z F, LIU H H, et al. Sapphire fiber and its application in high temperature sensors[J]. Acta Optica Sinica, 2019, 48(11): 1148004(in Chinese). [107] AIZAWA H, OHISHI N, OGAWA S, et al. Characteristics of sapphire fiber connected with ruby sensor head for the fiber-optic thermometer applications[J]. Sensors and Actuators A: Physical, 2002, 101(1/2): 42-48. [108] AN N, ZHOU H L, ZHU K S, et al. Improved temperature sensing performance of YAG∶Ho3+/Yb3+ by doping Ce3+ ions based on up-conversion luminescence[J]. Journal of Alloys and Compounds, 2020, 843: 156057. [109] LEE C E, TAYLOR H F. Interferometric optical fibre sensors using internal mirrors[J]. Electronics Letters, 1988, 24(4): 193. [110] TIAN Z, YU Z, LIU B, et al. Sourceless optical fiber high temperature sensor[J]. Optics Letters, 2016, 41(2): 195-198. [111] YANG S, FENG Z A, JIA X T, et al. All-sapphire miniature optical fiber tip sensor for high temperature measurement[J]. Journal of Lightwave Technology, 2020, 38(7): 1988-1997. [112] HABISREUTHER T, ELSMANN T, PAN Z W, et al. Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics[J]. Applied Thermal Engineering, 2015, 91: 860-865. [113] WILSON B A, BLUE T E. Quasi-distributed temperature sensing using type-Ⅱ fiber Bragg gratings in sapphire optical fiber to temperatures up to 1300 ℃[J]. IEEE Sensors Journal, 2018, 18(20): 8345-8351. [114] HUANG J, LAN X W, SONG Y, et al. Microwave interrogated sapphire fiber Michelson interferometer for high temperature sensing[J]. IEEE Photonics Technology Letters, 2015, 27(13): 1398-1401. [115] LIU B, OHODNICKI P R. Fabrication and application of single crystal fiber: review and prospective[J]. Advanced Materials Technologies, 2021: 2100125. [116] LIU B, YU Z H, HILL C, et al. Sapphire-fiber-based distributed high-temperature sensing system[J]. Optics Letters, 2016, 41(18): 4405-4408. [117] GUO Y Q, XIA W, HU Z Z, et al. High-temperature sensor instrumentation with a thin-film-based sapphire fiber[J]. Applied Optics, 2017, 56(8): 2068-2073. [118] TONG L M, SHEN Y H, YE L H, et al. A zirconia single-crystal fibre-optic sensor for contact measurement of temperatures above 2000 ℃[J]. Measurement Science and Technology, 1999, 10(7): 607-611. [119] DAW J, REMPE J, PALMER J, et al. NEET in-pile ultrasonic sensor enablement-final report[R]. Office of Scientific and Technical Information (OSTI), 2014. [120] LAURIE M, MAGALLON D, REMPE J, et al. Ultrasonic high-temperature sensors: past experiments and prospects for future use[J]. International Journal of Thermophysics, 2010, 31(8/9): 1417-1427. [121] LIANG H J, YANG F B, YANG L, et al. Research and implementation of a 1800 ℃ sapphire ultrasonic thermometer[J]. Journal of Sensors, 2017, 2017: 1-7. [122] WANG T, WANG H Y, ZHANG J, et al. Design and directional growth of (Mg1-xZnx)(Al1-yCry)2O4 single-crystal fibers for high-sensitivity and high-temperature sensing based on lattice doping engineering and acoustic anisotropy[J]. Advanced Functional Materials, 2021: 2103224. [123] WEI Y L, GAO Y B, XIAO Z Q, et al. Ultrasonic Al2O3 ceramic thermometry in high-temperature oxidation environment[J]. Sensors, 2016, 16(11): 1905. |
[1] | XU Wanli, GAN Yunhai, LI Yuewen, LI Bin, ZHENG Youdou, ZHANG Rong, XIU Xiangqian. High Rate HVPE Growth of High Uniformity 6-Inch GaN Thick Film [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 11-16. |
[2] | SUN Yuanlong, HU Ziyu, ZHENG Guozong. Growth and Photoelectric Properties Characterization of Large-Sized CH3NH3PbBr3 Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1313-1318. |
[3] | MA Qisi, LIU Jianggao, SHE Weilin, CAO Cong, ZHANG Lichao, ZHAO Chao, FAN Yexia, ZHOU Zhenqi. Effect of Furnace Air Convection on the Temperature Field of Tellurium Zinc Cadmium Crystal Growth Based on CGSim Simulation [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1344-1351. |
[4] | LING Hao, XU Le, CHEN Sixian, TANG Yuanzhi, SUN Haibin, GUO Xue, FENG Yurun, HU Qiangqiang. Growth and Optical Properties of Large Size CsCu2I3 Single Crystal by Solution Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1121-1126. |
[5] | AI Jiaxin, WAN Hongping, QIAN Junbing, WEI Hua. Influence of VGF Indium Phosphide Single Crystal Furnace Heater on the Thermal Field Distribution in the Furnace [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 781-791. |
[6] | XING Jiabin, LI Wei, JIA Songyan, MA Yali, LI Xue, ZHENG Qiang. Preparation of Highly Dispersed Nano Calcium Carbonate by Low-Temperature Carbonization Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 864-872. |
[7] | HUANG Changbao, HU Qianqian, ZHU Zhicheng, LI Ya, MAO Changyu, XU Junjie, WU Haixin, NI Youbao. Growth and Device Fabrication of Mid to Far-Infrared Cr2+/Fe2+∶CdSe Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 551-553. |
[8] | QIN Feng, WU Jinjie, DENG Ningqin, JIAO Zhiwei, ZHU Weifeng, TANG Xianqiang, ZHAO Rui. Research Progress for Lead Halide Perovskite Direct Radiation Detector Based on the Solution Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 554-571. |
[9] | CAO Cong, LIU Jianggao, FAN Yexia, LI Zhenxing, ZHOU Zhenqi, MA Qisi, NIU Jiajia. Relationship Between Temperature Gradient and Interfacial Shape Stability of CZT Crystal Growth [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 641-648. |
[10] | WANG Kunyuan, LIANG Xiaoyan, MIN Jiahua, ZHANG Jijun. Effect of In-Situ Heating Treatment on the Quality and Properties of CdZnTe Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(12): 2079-2084. |
[11] | LI Dongmei, ZHOU Jun, WU Feifan, LYU Jiabo, XIAO Li, GONG Hengxiang. Effect of Electrostatic Field on the Preparation of TiO2 Thin Films by Ultrasonic Atomised Pyrolytic Spraying [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(12): 2173-2180. |
[12] | REN Yongchun, LI Jianda, CAO Xiao, HUANG Yi, ZHANG Fan, ZHANG Ning, XUE Yanyan, WANG Qingguo, TANG Huili, XU Xiaodong, DONG Yongjun, XU Jun. Research Progress on High-Melting-Point Rare Earth Oxides Laser Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(11): 1829-1839. |
[13] | GUO Jun, LIU Jian, WANG Zebin, CHEN Peng, SONG Qingsong, MA Jie, WANG Qingguo, XU Xiaodong, XU Jun. Growth, Spectroscopic Properties and Laser Performance of Nd∶ASL Single Crystal Fibers [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(11): 1877-1883. |
[14] | DOU Renqin, HUANG Lei, WANG Xiaofei, GAO Jinyun, LIU Wenpeng, LUO Jianqiao, ZHANG Qingli. Growth and Properties of Nd∶TSAG Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(11): 1936-1943. |
[15] | LI Hongyuan, SUN Dunlu, ZHANG Huili, LUO Jianqiao, QUAN Cong, CHENG Maojie. Research Progress on Gallium Garnet Series Single Crystal with Large Lattice Constant for Magneto-Optical Substrates [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(10): 1657-1668. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||