[1] THEERTHAGIRI J, SALLA S, SENTHIL R A, et al. A review on ZnO nanostructured materials: energy, environmental and biological applications[J]. Nanotechnology, 2019, 30(39): 392001. [2] RASHID M, IKRAM M, HAIDER A, et al. Photocatalytic, dye degradation, and bactericidal behavior of Cu-doped ZnO nanorods and their molecular docking analysis[J]. Dalton Transactions, 2020, 49(24): 8314-8330. [3] SAMADI M, ZIRAK M, NASERI A, et al. Design and tailoring of one-dimensional ZnO nanomaterials for photocatalytic degradation of organic dyes: a review[J]. Research on Chemical Intermediates, 2019, 45(4): 2197-2254. [4] LIU J L, WANG Y H, MA J Z, et al. A review on bidirectional analogies between the photocatalysis and antibacterial properties of ZnO[J]. Journal of Alloys and Compounds, 2019, 783: 898-918. [5] RAMASAMY B, JEYADHARMARAJAN J, CHINNAIYAN P. Novel organic assisted Ag-ZnO photocatalyst for atenolol and acetaminophen photocatalytic degradation under visible radiation: performance and reaction mechanism[J]. Environmental Science and Pollution Research, 2021, 28(29): 39637-39647. [6] NIE M, LIAO J M, CAI H L, et al. Photocatalytic property of silver enhanced Ag/ZnO composite catalyst[J]. Chemical Physics Letters, 2021, 768: 138394. [7] ONKANI S P, DIAGBOYA P N, MTUNZI F M, et al. Comparative study of the photocatalytic degradation of 2-chlorophenol under UV irradiation using pristine and Ag-doped species of TiO2, ZnO and ZnS photocatalysts[J]. Journal of Environmental Management, 2020, 260: 110145. [8] LIANG X Z, WANG P, GAO Y G, et al. Design and synthesis of porous M-ZnO/CeO2 microspheres as efficient plasmonic photocatalysts for nonpolar gaseous molecules oxidation: insight into the role of oxygen vacancy defects and M=Ag, Au nanoparticles[J]. Applied Catalysis B: Environmental, 2020, 260: 118151. [9] ZIASHAHABI A, PRATO M, DANG Z Y, et al. The effect of silver oxidation on the photocatalytic activity of Ag/ZnO hybrid plasmonic/metal-oxide nanostructures under visible light and in the dark[J]. Scientific Reports, 2019, 9: 11839. [10] LI X L, HE S S, LIU X S, et al. Polymer-assisted freeze-drying synthesis of Ag-doped ZnO nanoparticles with enhanced photocatalytic activity[J]. Ceramics International, 2019, 45(1): 494-502. [11] ASHEBIR M E, TESFAMARIAM G M, NIGUSSIE G Y, et al. Structural, optical, and photocatalytic activities of Ag-doped and Mn-doped ZnO nanoparticles[J]. Journal of Nanomaterials, 2018, 2018: 1-9. [12] 张海峰,李 鹏,卢士香,等.Cu/Ag单掺及Cu-Ag共掺对ZnO光催化性能影响的第一性原理研究[J].人工晶体学报,2020,49(6):1112-1120. ZHANG H F, LI P, LU S X, et al. First-principles study on the photocatalytic activity of Cu/Ag doped and Cu-Ag codoped ZnO[J]. Journal of Synthetic Crystals, 2020, 49(6): 1112-1120(in Chinese). [13] 郝艳艳,张 影,赵 琳.ZnO-SiO2的制备及其光催化降解罗丹明B[J].人工晶体学报,2017,46(7):1379-1384. HAO Y Y, ZHANG Y, ZHAO L. Fabrication of ZnO-SiO2 and its photocatalytic degradation of rhodamine B[J]. Journal of Synthetic Crystals, 2017, 46(7): 1379-1384(in Chinese). [14] HOU Q Y, SHA S L. First-principles study of acceptor Li/Ag/Cu doping and Zn vacancy on the magnetic mechanism of ZnO and the universality of itinerant electrons[J]. Materials Today Communications, 2021, 26: 101944. [15] LIU Y J, HOU Q Y, SHA S L, et al. Electronic structure, optical and ferromagnetic properties of ZnO co-doped with Ag and Co according to first-principles calculations[J]. Vacuum, 2020, 173: 109127. [16] LIU Y J, HOU Q Y, XU Z C, et al. Effects of Ag doping and point defect on the magnetism of ZnO[J]. Journal of Superconductivity and Novel Magnetism, 2019, 32(7): 2097-2106. [17] BERDIYOROV G R, BOLTAYEV F, ESHONQULOV G, et al. Effect of vacancy defects on the electronic transport properties of an Ag-ZnO-Pt sandwich structure[J]. Journal of Computational Electronics, 2021, 20(2): 798-804. [18] THANG H V, PACCHIONI G. H2 adsorption on wurtzite ZnO and on ZnO/M(111) (M=Cu, Ag and Au) bilayer films[J]. ChemNanoMat, 2019, 5(7): 932-939. [19] POSTICA V, VAHL A, SANTOS-CARBALLAL D, et al. Tuning ZnO sensors reactivity toward volatile organic compounds via Ag doping and nanoparticle functionalization[J]. ACS Applied Materials & Interfaces, 2019, 11(34): 31452-31466. [20] MASOUMI S, NADIMI E, HOSSEIN-BABAEI F. Electronic properties of Ag-doped ZnO∶DFT hybrid functional study[J]. Physical Chemistry Chemical Physics, 2018, 20(21): 14688-14693. [21] ZHANG M L, CHEN Y H, ZHANG C R, et al. Effect of intrinsic defects and copper impurities co-existing on electromagnetic optical properties of ZnO: first principles study[J]. Acta Physica Sinica, 2019, 68(8): 087101. [22] MA Z H, REN F Z, MING X L, et al. Cu-doped ZnO electronic structure and optical properties studied by first-principles calculations and experiments[J]. Materials, 2019, 12(1): 196. [23] HOU Q Y, ZHAO C W, JIA X F, et al. Effect of heavy Ag doping on the physical properties of ZnO[J]. International Journal of Modern Physics B, 2018, 32(9): 1850099. [24] LI Y L, ZHAO X, FAN W L. Structural, electronic, and optical properties of Ag-doped ZnO nanowires: first principles study[J]. The Journal of Physical Chemistry C, 2011, 115(9): 3552-3557. [25] JOTHIBAS M, MUTHUVEL A, SENTHILKANNAN K, et al. Structural, optical and photocatatic activity of Ag doped ZnO nanoparticles obtained by Sol-gel method[C]//Proceedings Of The International Conference on Advanced Materials: ICAM 2019. Kerala, India. AIP Publishing, 2019: 020151. [26] WANG L L. Growth of well-aligned Ag-doped ZnO nanorods arrays on FTO substrate using electrochemical approach: optical properties and photocatalytic activity[J]. International Journal of Electrochemical Science, 2019: 9150-9158. [27] TRAN M L, NGUYEN C H, FU C C, et al. Hybridizing Ag-Doped ZnO nanoparticles with graphite as potential photocatalysts for enhanced removal of metronidazole antibiotic from water[J]. Journal of Environmental Management, 2019, 252: 109611. [28] OKOYE C I. Theoretical study of the electronic structure, chemical bonding and optical properties of KNbO3in the paraelectric cubic phase[J]. Journal of Physics: Condensed Matter, 2003, 15(35): 5945-5958. [29] CAZZANIGA M, CARAMELLA L, MANINI N, et al. Ab initiointraband contributions to the optical properties of metals[J]. Physical Review B, 2010, 82(3): 035104. [30] YAN Y F, AL JASSIM M M, WEI S H. Oxygen-vacancy mediated adsorption and reactions of molecular oxygen on theZnO(1010)surface[J]. Physical Review B, 2005, 72(16): 161307. [31] ZHA R H, SHI T, LI C, et al. Oxygen vacancy-engineered surfaces of ZnO-decorated porous BiOI microspheres for strongly enhanced visible-light NO oxidation[J]. Catalysis Science & Technology, 2021, 11(12): 4235-4244. [32] YU F C, LIU Z Y, LI Y M, et al. Effect of oxygen vacancy defect regeneration on photocatalytic properties of ZnO nanorods[J]. Applied Physics A, 2020, 126(12): 1-12. |