[1] 冯 晨,曾开文,孙 浩,等.氮化镓半导体材料通信电源应用[J].电信工程技术与标准化,2021,34(7):20-23. FENG C, ZENG K W, SUN H, et al. Application of GaN semiconductor material in communication power supply[J]. Telecom Engineering Technics and Standardization, 2021, 34(7): 20-23(in Chinese). [2] 郝 跃,马晓华,杨 凌.氮化镓毫米波功放技术发展[J].上海航天(中英文),2021,38(3):35-45. HAO Y, MA X H, YANG L. Review on GaN-based mm-wave power amplifier technology[J]. Aerospace Shanghai (Chinese & English), 2021, 38(3): 35-45(in Chinese). [3] 谢欣荣.第三代半导体材料氮化镓(GaN)研究进展[J].广东化工,2020,47(18):92-93. XIE X R. The research progress of the third generation semiconductor materials GaN[J]. Guangdong Chemical Industry, 2020, 47(18): 92-93(in Chinese). [4] 刘如青,刘 帅,高学邦,等.V波段3 W GaN功率放大器MMIC[J].半导体技术,2021,46(8):599-603+634. LIU R Q, LIU S, GAO X B, et al. V-band 3 W GaN power amplifier MMIC[J]. Semiconductor Technology, 2021, 46(8): 599-603+634(in Chinese). [5] 沈 丛,张心怡.“新秀”氮化镓尝试“上车”[N].中国电子报,2021-07-13(1). SHEN C, ZHANG X Y. ‘Rookie’ GN tries to get on highway[N]. China Electronics News, 2021-07-13(1) (in Chinese). [6] 王 帅,钟世昌,陈 悦.GaN大功率Quasi-MMIC在片测试系统的研究[J].现代制造技术与装备,2021,57(6):82-83. WANG S, ZHONG S C, CHEN Y. Research on GaN high power quasi-MMIC in sheet testing system[J]. Modern Manufacturing Technology and Equipment, 2021, 57(6): 82-83(in Chinese). [7] 尹 睿,金 健,徐 敏.氮化镓器件在车载激光雷达中的应用[J].电子技术,2021,50(7):26-28. YIN R, JIN J, XU M. Application of GaN device in vehicle lidar[J]. Electronic Technology, 2021, 50(7): 26-28(in Chinese). [8] 郭孝浩,胡 磊,任霄钰,等.GaN基光栅的干法刻蚀工艺[J].发光学报,2021,42(6):889-895. GUO X H, HU L, REN X Y, et al. Fabrication of GaN-based grating by optimized inductively coupled plasma etching[J]. Chinese Journal of Luminescence, 2021, 42(6): 889-895(in Chinese). [9] 廉宇轩,冯 伟,丁青峰,等.基于AlGaN/GaN HEMT太赫兹探测器的340 GHz无线通信接收前端[J].红外与激光工程,2021,50(5):134-141. LIAN Y X, FENG W, DING Q F, et al. 340 GHz wireless communication receiving front-ends based on AlGaN/GaN HEMT terahertz detectors[J]. Infrared and Laser Engineering, 2021, 50(5): 134-141(in Chinese). [10] 邱 然,刘禹涵,李百奎.肖特基型p-GaN栅极电致发光研究[J].深圳大学学报(理工版),2021,38(3):227-231. QIU R, LIU Y H, LI B K. Electroluminescence from a Schottky-type p-GaN gate structure[J]. Journal of Shenzhen University (Science and Engineering), 2021, 38(3): 227-231(in Chinese). [11] 唐道胜,曹炳阳.面向应力对GaN晶格热导率的影响研究[J].工程热物理学报,2021,42(6):1546-1552. TANG D S, CAO B Y. Effects of in-plane strain on lattice thermal conductivity of GaN[J]. Journal of Engineering Thermophysics, 2021, 42(6): 1546-1552(in Chinese). [12] 郝 跃,张金风,张进成.氮化物宽禁带半导体材料与电子器件[M].北京:科学出版社,2013. HAO Y, ZHANG J F, ZHANG J C. Nitride wide band gap semiconductor materials and its electronic devices[M]. Beijing: Science Press, 2013(in Chinese). [13] PASZKOWICZ W, PODSIADŁO S, MINIKAYEV R. Rietveld-refinement study of aluminium and gallium nitrides[J]. Journal of Alloys and Compounds, 2004, 382(1/2): 100-106. [14] KANHE N S, NAWALE A B, GAWADE R L, et al. Understanding the growth of micro and nano-crystalline AlN by thermal plasma process[J]. Journal of Crystal Growth, 2012, 339(1): 36-45. [15] CHEN X L, LAN Y C, LIANG J K, et al. Structure and heat capacity of wurtzite GaN from 113 to 1073 K[J]. Chinese Physics Letters, 1999, 16(2): 107-108. [16] 宋 娟,丁 召,张振东,等.AlxGa1-xAs材料结构与物理特性的第一性原理研究[J].人工晶体学报,2020,49(5):824-832. SONG J, DING Z, ZHANG Z D, et al. First-principles study on the structure and physical properties of AlxGa1-x as materials[J]. Journal of Synthetic Crystals, 2020, 49(5): 824-832(in Chinese). [17] KHURGIN J, DING Y J, JENA D. Hot phonon effect on electron velocity saturation in GaN: a second look[J]. Applied Physics Letters, 2007, 91(25): 252104. [18] 赵 程. Cascode结构GaN基HEMT器件功率循环温度可靠性研究[D]. 大连: 大连理工大学, 2021. ZHAO C. Research on temperature reliability of cascode structure GaN-based HEMT device dependent on power cycle[D]. Dalian: Dalian University of technology, 2021(in Chinese). |