JOURNAL OF SYNTHETIC CRYSTALS ›› 2021, Vol. 50 ›› Issue (12): 2379-2388.
• Reviews • Previous Articles Next Articles
LI Dandan, HU Qianku, ZHANG Bin, WANG Libo, ZHOU Aiguo
Received:
2021-08-19
Online:
2021-12-15
Published:
2022-01-06
[1] BARSOUM M W. The MN+1AXN phases: a new class of solids: thermodynamically stable nanolaminates[J]. Progress in Solid State Chemistry, 2000, 28(1/2/3/4): 201-281. [2] BARSOUM M W, BRODKIN D, EL-RAGHY T. Layered machinable ceramics for high temperature applications[J]. Scripta Materialia, 1997, 36(5): 535-541. [3] EL-RAGHY T, BARSOUM M W, ZAVALIANGOS A, et al. Processing and mechanical properties of Ti3SiC2: ii, effect of grain size and deformation temperature[J]. Journal of the American Ceramic Society, 1999, 82(10): 2855-2860. [4] BARSOUM M W, EL-RAGHY T, PROCOPIO A. Synthesis of Ti4AlN3 and phase equilibria in the Ti-Al-N system[J]. Metallurgical and Materials Transactions A, 2000, 31(2): 373-378. [5] EL-RAGHY T, CHAKRABORTY S, BARSOUM M W. Synthesis and characterization of Hf2PbC, Zr2PbC and M2SnC(M=Ti, Hf, Nb or Zr)[J]. Journal of the European Ceramic Society, 2000, 20: 2619-2625. [6] FINKEL P, BARSOUM M W, EL-RAGHY T. Low temperature dependencies of the elastic properties of Ti4AlN3, Ti3Al1.1C1.8, and Ti3SiC2[J]. Journal of Applied Physics, 2000, 87(4): 1701-1703. [7] SUN Z M. Progress in research and development on MAX phases: a family of layered ternary compounds[J]. International Materials Reviews, 2011, 56(3): 143-166. [8] SUN Z M, HASHIMOTO H, ZHANG Z F, et al. Synthesis and characterization of a metallic ceramic material-Ti3SiC2[J]. Materials Transactions, 2006, 47(1): 170-174. [9] BARSOUM M W, RADOVIC M. Elastic and mechanical properties of the MAX phases[J]. Annual Review of Materials Research, 2011, 41(1): 195-227. [10] BARSOUM M W. MAX phases[M]. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. [11] NOWOTNY V H. Strukturchemie einiger Verbindungen der Übergangsmetalle mit den elementen C, Si, Ge, Sn[J]. Progress in Solid State Chemistry, 1971, 5: 27-70. [12] JEITSCHKO W, NOWOTNY H, BENESOVSKY F. Die H-phasen: Ti2CdC, Ti2GaC, Ti2GaN, Ti2InN, Zr2InN und Nb2GaC[J]. Monatshefte Für Chemie Und Verwandte Teile Anderer Wissenschaften, 1964, 95(1): 178-179. [13] JEITSCHKO W, NOWOTNY H. Die Kristallstruktur von Ti3SiC2—ein neuer Komplexcarbid-Typ[J]. Monatshefte Für Chemie - Chemical Monthly, 1967, 98(2): 329-337. [14] WOLFSGRUBER H, NOWOTNY H, BENESOVSKY F. Die kristallstruktur von Ti3GeC2[J]. Monatshefte Für Chemie Und Verwandte Teile Anderer Wissenschaften, 1967, 98(6): 2403-2405. [15] PIETZKA M A, SCHUSTER J C. Summary of constitutional data on the aluminum-carbon-titanium system[J]. Journal of Phase Equilibria, 1994, 15(4): 392-400. [16] BARSOUM M W, EL-RAGHY T. Synthesis and characterization of a remarkable ceramic: Ti3SiC2[J]. Journal of the American Ceramic Society, 1996, 79(7): 1953-1956. [17] BARSOUM M W, FARBER L, LEVIN I, et al. High-resolution transmission electron microscopy of Ti4AlN3, or Ti3Al2N2 revisited[J]. Journal of the American Ceramic Society, 1999, 82(9): 2545-2547. [18] LIN Z J, ZHUO M J, ZHOU Y C, et al. Microstructures and theoretical bulk modulus of layered ternary tantalum aluminum carbides[J]. Journal of the American Ceramic Society, 2006, 89(12): 3765-3769. [19] DUBOIS S, CABIOC'H T, CHARTIER P, et al. A new ternary nanolaminate carbide: Ti3SnC2[J]. Journal of the American Ceramic Society, 2007, 90(8): 2642-2644. [20] ZHOU Y C, MENG F L, ZHANG J. New MAX-phase compounds in the V-Cr-Al-C system[J]. Journal of the American Ceramic Society, 2008, 91(4): 1357-1360. [21] LAPAUW T, HALIM J, LU J, et al. Synthesis of the novel Zr3AlC2 MAX phase[J]. Journal of the European Ceramic Society, 2016, 36(3): 943-947. [22] LIU Z M, ZHENG L Y, SUN L C, et al. (Cr2/3Ti1/3)3AlC2 and (Cr5/8Ti3/8)4AlC3: new MAX-phase compounds In Ti-Cr-Al-C system[J]. Journal of the American Ceramic Society, 2014, 97(1): 67-69. [23] LIU Z M, WU E D, WANG J M, et al. Crystal structure and formation mechanism of (Cr2/3Ti1/3)3AlC2 MAX phase[J]. Acta Materialia, 2014, 73: 186-193. [24] ANASORI B, HALIM J, LU J, et al. Mo2TiAlC2: a new ordered layered ternary carbide[J]. Scripta Materialia, 2015, 101: 5-7. [25] RAWN C J, BARSOUM M W, EL-RAGHY T, et al. Structure of Ti4AlN3: a layered Mn+1AXn nitride[J]. Materials Research Bulletin, 2000, 35(11): 1785-1796. [26] BARSOUM M W, EL-RAGHY T, PROCOPIO A. Characterization of Ti4AlN3[J]. Metallurgical and Materials Transactions A, 2000, 31(2): 333-337. [27] EKLUND P, PALMQUIST J P, HÖWING J, et al. Ta4AlC3: phase determination, polymorphism and deformation[J]. Acta Materialia, 2007, 55(14): 4723-4729. [28] HU C F, LI F Z, ZHANG J, et al. Nb4AlC3: a new compound belonging to the MAX phases[J]. Scripta Materialia, 2007, 57(10): 893-896. [29] ETZKORN J, ADE M, HILLEBRECHT H. V2AlC, V4AlC3-x (x approximately 0.31), and V12Al3C8: synthesis, crystal growth, structure, and superstructure[J]. Inorganic Chemistry, 2007, 46(18): 7646-7653. [30] HU C F, ZHANG J, WANG J M, et al. Crystal structure of V4AlC3: a new layered ternary carbide[J]. Journal of the American Ceramic Society, 2008, 91(2): 636-639. [31] ANASORI B, DAHLQVIST M, HALIM J, et al. Experimental and theoretical characterization of ordered MAX phases Mo2TiAlC2 and Mo2Ti2AlC3[J]. Journal of Applied Physics, 2015, 118(9): 094304. [32] ISTOMIN P, ISTOMINA E, NADUTKIN A, et al. Synthesis of a bulk Ti4SiC3 MAX phase by reduction of TiO2 with SiC[J]. Inorganic Chemistry, 2016, 55(21): 11050-11056. [33] HÖGBERG H, EKLUND P, EMMERLICH J, et al. Epitaxial Ti2GeC, Ti3GeC2, and Ti4GeC3 MAX-phase thin films grown by magnetron sputtering[J]. Journal of Materials Research, 2005, 20(4): 779-782. [34] PALMQUIST J P, LI S, PERSSON P O Å, et al. Mn+1AXn phases in the Ti-Si-C system studied by thin-film synthesis and ab initio calculations[J]. Physical Review B, 2004, 70(16): 165401. [35] ZHANG J, LIU B, WANG J Y, et al. Low-temperature instability of Ti2SnC: a combined transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction investigations[J]. Journal of Materials Research, 2009, 24(1): 39-49. [36] ZHENG L Y, WANG J M, LU X P, et al. (Ti0.5Nb0.5)5AlC4: a new-layered compound belonging to MAX phases[J]. Journal of the American Ceramic Society, 2010, 93(10): 3068-3071. [37] SOKOL M, NATU V, KOTA S, et al. On the chemical diversity of the MAX phases[J]. Trends in Chemistry, 2019, 1(2): 210-223. [38] WANG J Y, ZHOU Y C. Recent progress in theoretical prediction, preparation, and characterization of layered ternary transition-metal carbides[J]. Annual Review of Materials Research, 2009, 39(1): 415-443. [39] WANG X H, ZHOU Y C. Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review[J]. Journal of Materials Science & Technology, 2010, 26(5): 385-416. [40] HU C F, ZHANG H B, LI F Z, et al. New phases’ discovery in MAX family[J]. International Journal of Refractory Metals and Hard Materials, 2013, 36: 300-312. [41] EKLUND P, BECKERS M, JANSSON U, et al. The Mn+1AXn phases: materials science and thin-film processing[J]. Thin Solid Films, 2010, 518(8): 1851-1878. [42] RADOVIC M, BARSOUM M W. MAX phases: Bridging the gap between metals and ceramics[J]. American Ceramic Society Bulletin, 2013, 92(3): 20-27. [43] FASHANDI H, DAHLQVIST M, LU J, et al. Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC[J]. Nature Materials, 2017, 16(8): 814-818. [44] FASHANDI H, LAI C C, DAHLQVIST M, et al. Ti2Au2C and Ti3Au2C2 formed by solid state reaction of gold with Ti2AlC and Ti3AlC2[J]. Chemical Communications, 2017, 53(69): 9554-9557. [45] LAI C C, FASHANDI H, LU J, et al. Phase formation of nanolaminated Mo2AuC and Mo2(Au1-xGax)2C by a substitutional reaction within Au-capped Mo2GaC and Mo2Ga2C thin films[J]. Nanoscale, 2017, 9(45): 17681-17687. [46] LAI C C, TAO Q Z, FASHANDI H, et al. Magnetic properties and structural characterization of layered (Cr0.5Mn0.5)2AuC synthesized by thermally induced substitutional reaction in (Cr0.5Mn0.5)2GaC[J]. APL Materials, 2018, 6(2): 026104. [47] 李 勉,李友兵,罗 侃,等.基于A位元素置换策略合成新型MAX相材料Ti3ZnC2[J].无机材料学报,2019,34(1):60-64. LI M, LI Y B, LUO K, et al. Synthesis of novel MAX phase Ti3ZnC2 via A-site-element-substitution approach[J]. Journal of Inorganic Materials, 2019, 34(1): 60-64(in Chinese). [48] LI M, LU J, LUO K, et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes[J]. Journal of the American Chemical Society, 2019, 141(11): 4730-4737. [49] LI Y B, LI M, LU J, et al. Single-atom-thick active layers realized in nanolaminated Ti3(AlxCu1-x)C2 and its artificial enzyme behavior[J]. ACS Nano, 2019, 13(8): 9198-9205. [50] KUCHIDA S, MURANAKA T, KAWASHIMA K, et al. Superconductivity in Lu2SnC[J]. Physica C: Superconductivity, 2013, 494: 77-79. [51] WANG J J, YE T N, GONG Y T, et al. Discovery of hexagonal ternary phase Ti2InB2 and its evolution to layered boride TiB[J]. Nature Communications, 2019, 10(1): 1-8. [52] ZHOU Y C, XIANG H M, DAI F Z, et al. M2YSi (M=Rh, Ir): theoretically predicted damage-tolerant MAX phase-like layered silicides[J]. Journal of the American Ceramic Society, 2018, 101(1): 365-375. [53] HU C, LAI C C, TAO Q, et al. Mo2Ga2C: a new ternary nanolaminated carbide[J]. Chemical Communications, 2015, 51(30): 6560-6563. [54] LAI C C, MESHKIAN R, DAHLQVIST M, et al. Structural and chemical determination of the new nanolaminated carbide Mo2Ga2C from first principles and materials analysis[J]. Acta Materialia, 2015, 99: 157-164. [55] WANG H C, WANG J N, SHI X F, et al. Possible new metastable Mo2Ga2C and its phase transition under pressure: a density functional prediction[J]. Journal of Materials Science, 2016, 51(18): 8452-8460. [56] MA H D. New ternary nanolaminated carbide Mo2Ga2C: a first-principles comparison with the MAX phase counterpart Mo2GaC[J]. Computational Materials Science, 2016, 117: 422-427. [57] LING W D, WEI P, DUAN J Z, et al. First-principles study of newly synthesized nanolaminate Mo2Ga2C[J]. Modern Physics Letters B, 2017, 31(27): 1750248. [58] CHAIX-PLUCHERY O, THORE A, KOTA S, et al. First-order Raman scattering in three-layered Mo-based ternaries: MoAlB, Mo2Ga2C and Mo2GaC[J]. Journal of Raman Spectroscopy, 2017, 48(5): 631-638. [59] ALI M A, KHATUN M R, JAHAN N, et al. Comparative study of Mo2Ga2C with superconducting MAX phase Mo2GaC: first-principles calculations[J]. Chinese Physics B, 2017, 26(3): 033102. [60] HE H T, JIN S, FAN G X, et al. Synthesis mechanisms and thermal stability of ternary carbide Mo2Ga2C[J]. Ceramics International, 2018, 44(18): 22289-22296. [61] 金 森,王作通,杜亚琼,等.双A层MAX相Mo2Ga2C的热压烧结研究[J].无机材料学报,2020,35(1):41-45. JIN S, WANG Z T, DU Y Q, et al. Hot-pressing sintering of double-A-layer MAX phase Mo2Ga2C[J]. Journal of Inorganic Materials, 2020, 35(1): 41-45(in Chinese). [62] 金 森,周爱国,胡前库,等.三元碳化物Mo2Ga2C及其二维衍生物的研究进展[J].硅酸盐通报,2020,39(3):866-872+909. JIN S, ZHOU A G, HU Q K, et al. Progress in ternary carbide Mo2Ga2C and its two-dimensional derivatives[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(3): 866-872+909(in Chinese). [63] JIN S, SU T C, HU Q K, et al. Thermal conductivity and electrical transport properties of double-A-layer MAX phase Mo2Ga2C[J]. Materials Research Letters, 2020, 8(4): 158-164. [64] TOTH L E. High superconducting transition temperatures in the molybdenum carbide family of compounds[J]. Journal of the Less Common Metals, 1967, 13(1): 129-131. [65] THORE A, DAHLQVIST M, ALLING B, et al. Phase stability of the nanolaminates V2Ga2C and (Mo1-xVx)2Ga2C from first-principles calculations[J]. Physical Chemistry Chemical Physics, 2016, 18(18): 12682-12688. [66] CHEN H X, YANG D L, ZHANG Q H, et al. A series of MAX phases with MA-triangular-prism bilayers and elastic properties[J]. Angewandte Chemie International Edition, 2019, 58(14): 4576-4580. [67] MANOUN B, SAXENA S K, EL-RAGHY T, et al. High-pressure X-ray diffraction study of Ta4AlC3[J]. Applied Physics Letters, 2006, 88(20): 201902. [68] HADI M A, RAYHAN M A, NAQIB S H, et al. Structural, elastic, thermal and lattice dynamic properties of new 321 MAX phases[J]. Computational Materials Science, 2019, 170: 109144. |
[1] | MO Qiuyan, ZHANG Song, JING Tao, WU Jiayin. First-Principles Study on the Adsorption of SO2 and CO on ReS2 Surface [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 107-114. |
[2] | ZHANG Ningning, YU Haitao, LIU Yanyan, XUE Dan. Electronic Structure and Optical Property of 4d Transition Metal Doped Monolayer WS2 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 77-84. |
[3] | WANG Yunjie, HE Zhihao, DING Jiafu, SU Xin. Influence of Cations on the Structural Framework and the Origin of Birefringence in X2(PO4)2 (X=Ba, Pb) and XPO4 (X=Y, Bi) [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 85-94. |
[4] | DING Jiafu, HE Zhihao, WANG Yunjie, SU Xin. First-Principles Study on the Regulation of Optical Properties of Gallium, Indium, and Thallium Phosphates Through Sulfur Substitution [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 95-106. |
[5] | ZHENG Quan, LIU Xuechao, WANG Hao, ZHU Xinfeng, PAN Xiuhong, CHEN Kun, DENG Weijie, TANG Meibo, XU Hao, WU Honghui, JIN Min. Effect of Aluminum Doping on the Crystal Structure and Properties of Indium Selenide Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1528-1535. |
[6] | JIAO Sihui, WU Hongping, YU Hongwei. CsBa2ScB8O16: the First Rare-Earth Borate Simultaneously Containing Zero-Dimensional [B3O6] Units and One-Dimensional B—O Chains [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1550-1559. |
[7] | MO Qiuyan, OU Manlin, ZHANG Song, JING Tao, WU Jiayin. First-Principles Study on the Effect of VI Group Elements Modification on the Electronic Properties of Two-Dimensional AlN [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1620-1628. |
[8] | SUN Liang, ZHANG Yu, WANG Qun. Electronic Structure and Magnetic Properties of the Bulk and (001) Surface of Heusler Alloy Mn2LiGe [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1378-1385. |
[9] | LIU Xiaoying, HUANG Haishen, SUN Li, PAN Mengmei, SHANG Zhenzhen. First-Principles Study on the Electronic and Magnetic Properties of MXene 2D Material CrVCF2 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1386-1393. |
[10] | LENG Haoning, SUN Xiaoxiao, LIU Fengju, ZHAO Xiangmin. First-Principles Study on Phase Transition Behavior of LiVO3 under High Pressure [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1222-1230. |
[11] | LI Lihua, ZHOU Longjie, LIU Shuo, WANG Hang, HUANG Jinliang. First-Principles Study on Electronic Structure and Optical Properties of SnO2 (110)/FAPbBrI2 (001) Interface [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1239-1248. |
[12] | HE Zhihao, GOU Jie, WANG Yunjie, QI Yajie, DING Jiafu, ZHANG Bo, ZHAO Xingsheng, PEI Yizhen, HOU Shuyu, SU Xin. First-Principles Study on Electronic Structure and Optical Properties of Zn-Doped Boron Nitride [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1249-1256. |
[13] | WANG Leilei, YIN Zhenhua, ZHANG Yunke, LIU Lei, CHEN Ming. First-Principles Study of Lead-Free Quaternary Thioiodides with Outstanding Optoelectronic Properties for Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 803-809. |
[14] | XU Zhonghui, XU Shengyuan, LIU Chuanchuan, LIU Guogang. First-Principles Study on Photogalvanic Effect and Strain Engineering of Monolayer SnS [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 676-683. |
[15] | LI Ping, QIN Yanjun, PANG Guowang, TANG Yuzhu, ZHANG Yao, WANG Peng, LIU Chenxi. First-Principles Study on the Photoelectric Properties of N and As Doped Two-Dimensional GeC [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 519-525. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||