[1] ZHANG S J, LI F, JIANG X N, et al. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers: a review[J]. Progress in Materials Science, 2015, 68: 1-66. [2] SUNTIVICH J, GASTEIGER H A, YABUUCHI N, et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries[J]. Nature Chemistry, 2011, 3(7): 546-550. [3] 黄 建,张学伍,赵 程,等.钛酸铅系功能陶瓷改性的研究现状及改性陶瓷的应用现状[J].机械工程材料,2021,45(6):94-98. HUANG J, ZHANG X W, ZHAO C, et al. Research status of modification of lead titanate series functional ceramics and application of modified ceramics[J]. Materials for Mechanical Engineering, 2021, 45(6): 94-98(in Chinese). [4] PERDEW J P, ZUNGER A. Self-interaction correction to density-functional approximations for many-body systems[J]. Physical Review B, Condensed Matter, 1981, 23: 5048-5079. [5] LV H, GAO H W, YANG Y, et al. Density functional theory (DFT) investigation on the structure and electronic properties of the cubic perovskite PbTiO3[J]. Applied Catalysis A: General, 2011, 404(1/2): 54-58. [6] HOSSEINI S M, MOVLAROOY T, KOMPANY A. First-principle calculations of the cohesive energy and the electronic properties of PbTiO3[J]. Physica B: Condensed Matter, 2007, 391(2): 316-321. [7] WANG F F, XIE Y, CHEN J, et al. First-principles study on negative thermal expansion of PbTiO3[J]. Applied Physics Letters, 2013, 103(22): 221901. [8] JIAO Y C, LI M, QU B Y, et al. First-principles study of the negative thermal expansion of PbTiO3[J]. Computational Materials Science, 2016, 124: 92-97. [9] NIU P J, YAN J L, XU C Y. First-principles study of nitrogen doping and oxygen vacancy in cubic PbTiO3[J]. Computational Materials Science, 2015, 98: 10-14. [10] 李宏光,闫金良.N掺杂位置对四方相PbTiO3电子结构和光学性能的影响[J].材料科学与工程学报,2017,35(1):14-18. LI H G, YAN J L. Electronic structures and optical properties of N-doped tetragonal PbTiO3 with different doping sites[J]. Journal of Materials Science and Engineering, 2017, 35(1): 14-18(in Chinese). [11] RIZWAN M, BIBI R, MAHMOOD T, et al. Band gap modulation effect on electronic and optical properties in PbTiO3 under stress: a DFT study[J]. The European Physical Journal Applied Physics, 2019, 88(1): 10501. [12] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [13] SHIRANE G, HOSHINO S, SUZUKI K. X-ray study of the phase transition in lead titanate[J]. Physical Review, 1950, 80(6): 1105-1106. [14] RODRIGUEZ J A, ETXEBERRIA A, GONZÁLEZ L, et al. Structural and electronic properties of PbTiO3, PbZrO3, and PbZr0.5Ti0.5O3: first-principles density-functional studies[J]. The Journal of Chemical Physics, 2002, 117(6): 2699-2709. [15] WEN Z Q, ZHAO Y H, LI J H, et al. Phase stability and thermo-physical properties of nickel-aluminum binary chemically disordered systems via first-principles study[J]. Metals and Materials International, 2021, 27(6): 1469-1477. [16] ZHOU M J, WANG Y, JI Y Z, et al. First-principles lattice dynamics and thermodynamic properties of pre-perovskite PbTiO3[J]. Acta Materialia, 2019, 171: 146-153. [17] LI Z X, HE G Q, KONG B, et al. Hybrid density functional studies for the effect of oxygen vacancy on the visible light photocatalytic activity in M (M=Li, Na, K, Rb, Cs)-doped α-Bi2O3[J]. Journal of Physics and Chemistry of Solids, 2020, 146: 109581. [18] SUN J, WANG H T, HE J L, et al. Ab initioinvestigations of optical properties of the high-pressure phases of ZnO[J]. Physical Review B, 2005, 71(12): 125132. |