[1] KIM J, YOON S Y, CHOI K. Effects of phosphorus diffusion gettering on minority carrier lifetimes of single-crystalline, multi-crystalline and UMG silicon wafer[J]. Current Applied Physics, 2013, 13(9): 2103-2108. [2] CHO E, OK Y W, DAHAL L D,et al. Comparison of POCl3 diffusion and phosphorus ion-implantation induced gettering in crystalline Si solar cells[J]. Solar Energy Materials and Solar Cells, 2016, 157: 245-249. [3] 王 雪,豆维江,秦应雄,等.多晶硅太阳电池激光掺杂选择性发射极[J].光子学报,2014,43(6):0614004. WANG X, DOU W J, QIN Y X, et al. Laser-doped selective emitter of polycrystalline silicon solar cell[J]. Acta Photonica Sinica, 2014, 43(6): 0614004(in Chinese). [4] LEE E, CHO K, OH D, et al. Exceeding 19% efficient 6 inch screen printed crystalline silicon solar cells with selective emitter[J]. Renewable Energy, 2012, 42: 95-98. [5] ZHOU Z B, PEREZ-WURFL I, SIMONDS B J. Rapid, deep dopant diffusion in crystalline silicon by laser-induced surface melting[J]. Materials Science in Semiconductor Processing, 2018, 86: 8-17. [6] OATES A, REEHAL H S. Effect of diffusion parameters on emitter formation in silicon solar cells by proximity rapid thermal diffusion[J]. Materials Science in Semiconductor Processing, 2018, 77: 83-87. [7] WU S L, LIL, WANG W, et al. Study on the front contact mechanism of screen-printed multi-crystalline silicon solar cells[J]. Solar Energy Materials and Solar Cells, 2015, 141: 80-86. [8] YÜCEC, OKAMOTOK, KARPOWICH L, et al. Non-volatile free silver paste formulation for front-side metallization of silicon solar cells[J]. Solar Energy Materials and Solar Cells, 2019, 200: 110040. [9] SUH D. Efficient implementation of multiple drive-in steps in thermal diffusion of phosphorus for PERC solar cells[J]. Current Applied Physics, 2018, 18(2): 178-182. [10] YE F, LI Y P, JIA X G, et al. Optimization of phosphorus dopant profile of industrial p-type mono PERC solar cells[J]. Solar Energy Materials and Solar Cells, 2019, 190: 30-36. [11] 汪已琳,任 哲,赵志然,等.减压扩散高阻密栅技术应用研究[J].人工晶体学报,2018,47(12):2659-2662. WANG Y L, REN Z, ZHAO Z R, et al. Study on decompression diffusion of high square resistance with dense grid technology[J]. Journal of Synthetic Crystals, 2018, 47(12): 2659-2662(in Chinese). [12] 熊志军,甘卫平,周 健,等.高方阻晶硅太阳能电池正面电极的匹配设计与烧结工艺[J].粉末冶金材料科学与工程,2014,19(4):608-614. XIONG Z J, GAN W P, ZHOU J, et al. Front side electrode matching design and firing profiles for crystalline silicon solar cells with high sheet resistance[J]. Materials Science and Engineering of Powder Metallurgy, 2014, 19(4): 608-614(in Chinese). [13] DINGD, LU G L, LI Z P, et al. High-efficiency n-type silicon PERT bifacial solar cells with selective emitters and poly-Si based passivating contacts[J]. Solar Energy, 2019, 193: 494-501. [14] HAYAMAY, TAKAHASHII, USAMI N. Controlling impurity distributions in crystalline Si for solar cells by using artificial designed defects[J]. Journal of Crystal Growth, 2017, 468: 610-613. [15] RAHMAN M M, MAHAMUDUL H, HASAN M N. Retracted: characterization of recombination properties at diffused surfaces for industrial silicon solar cell concepts[J]. Solar Energy, 2016, 135: 215-221. [16] ALI A, GOUVEAS T, HASAN M A, et al. Influence of deep level defects on the performance of crystalline silicon solar cells: experimental and simulation study[J]. Solar Energy Materials and Solar Cells, 2011, 95(10): 2805-2810. [17] 李 旺,韩玮智,牛新伟等.一种扩散后低方阻硅片返工的方法:中国,ZL201310719573.5[P].2016-06-01. LI W, HAN W Z, NIU X W, et al. Method for reworking low square resistance silicon wafer after diffusion: China, ZL201310719573.5[P].2016-06-01(in Chinese). [18] LEE H J, KANG M G, CHOI S J, et al. Characteristics of silicon solar cell emitter with a reduced diffused phosphorus inactive layer[J]. Current Applied Physics, 2013, 13(8): 1718-1722. [19] CUI M L, JIN C G, ZHUGE L J, etal. The impact of diffusion gettering on solar cell efficiency and light induced degradation[J]. Optik, 2019, 181: 129-133. [20] TYSCHENKO I E, VOELSKOW M, CHERKOV A G, et al. Endotaxial growth of InSb nanocrystals at the bonding interface of the In+ and Sb+ ion implanted SOI structure[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 2009, 267(8/9): 1360-1363. [21] NISHIBATA T, KOHTAKET, KAJIHARA M. Kinetic analysis of uphill diffusion of carbon in austenite phase of low-carbon steels[J]. Materials Transactions, 2020, 61(5): 909-918. [22] CHANG R D, LING Y T, SU W T. Suppression of uphill diffusion caused by phosphorus deactivation using carbon implantation[J]. Applied Surface Science, 2015, 356: 1150-1154. [23] DUNG V B. Uphill diffusion of Si-interstitial during boron diffusion in silicon[J]. Indian Journal of Physics, 2017, 91(10): 1233-1236. [24] 李 旺,唐 鹿,薛 飞,等.真空退火和氢退火对ZnO:B薄膜电学和光学性能的影响[J].人工晶体学报,2017,46(12):2438-2442. LI W, TANG L, XUE F, et al. Effect of vacuum and hydrogen annealing on the electrical and optical properties of ZnO:B thin films[J]. Journal of Synthetic Crystals, 2017, 46(12): 2438-2442(in Chinese). [25] 安其霖,曹国琛,李国欣,等.太阳能电池原理与工艺[M].上海:上海科学技术出版社,1984. AN Q L,CAO G S,LI G X,et al. Principle and process of solar cell [M]. Shanghai: Shanghai Scientific and Technical Publishers, 1984(in Chinese). |