[1] WANG H, LIU W, HE X, et al. An excitonic perspective on low-dimensional semiconductors for photocatalysis[J]. Journal of the American Chemical Society, 2020, 142(33): 14007-14022. [2] KISCH H. Semiconductor photocatalysis-mechanistic and synthetic aspects[J]. Angewandte Chemie International Edition, 2013, 52(3): 812-847. [3] WU H, YUAN C, CHEN R, et al. Mechanisms of interfacial charge transfer and photocatalytic NO oxidation on BiOBr/SnO2 p-n heterojunctions[J]. ACS Applied Materials & Interfaces, 2020, 12(39): 43741-43749. [4] ZHONG Y, LI W, ZHAO X, et al. High-response room-temperature NO2 sensor and ultrafast humidity sensor based on SnO2 with rich oxygen vacancy[J]. ACS Applied Materials & Interfaces, 2019, 11(14): 13441-13449. [5] LI S, QIN F, PENG Q, et al. Van der waals mixed valence tin oxides for perovskite solar cells as UV-stable electron transport materials[J]. Nano Letters, 2020, 20(11): 8178-8184. [6] HAN D, JIANG B, FENG J, et al. Photocatalytic self-doped SnO2-x nanocrystals drive visible-light-responsive color switching[J]. Angewandte Chemie International Edition, 2017, 56(27): 7792-7796. [7] PERIYASAMY M, KAR A. Modulating the properties of SnO2 nanocrystals: morphological effects on structural, photoluminescence, photocatalytic, electrochemical and gas sensing properties[J]. Journal of Materials Chemistry C, 2020, 8(14): 4604-4635. [8] ULLAH I, MUNIR A, MUHAMMAD S, et al. Influence of W-doping on the optical and electrical properties of SnO2 towards photocatalytic detoxification and electrocatalytic water splitting[J]. Journal of Alloys and Compounds, 2020, 827: Article 154247. [9] KING L A, YANG Q, GROSSETT M L, et al. Photosensitization of natural and synthetic SnO2 single crystals with dyes and quantum dots[J]. The Journal of Physical Chemistry C, 2016, 120(29): 15735-15742. [10] BUI D P, NGUYEN M T, TRAN H H, et al. Green synthesis of Ag@SnO2 nanocomposites for enhancing photocatalysis of nitrogen monoxide removal under solar light irradiation[J]. Catalysis Communications, 2020, 136: Article 105902. [11] SHAN H, WANG X, SHI F, et al. Hierarchical porous structured SiO2/SnO2 nanofibrous membrane with superb flexibility for molecular filtration[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 18966-18976. [12] YU C, HE H, LIU X, et al. Novel SiO2 nanoparticle-decorated BiOCl nanosheets exhibiting high photocatalytic performances for the removal of organic pollutants[J]. Chinese Journal of Catalysis, 2019, 40(8): 1212-1221. [13] ZENG D, YANG K, YU C, et al. Phase transformation and microwave hydrothermal guided a novel double Z-scheme ternary vanadate heterojunction with highly efficient photocatalytic performance[J]. Applied Catalysis B: Environmental, 2018, 237: 449-463. [14] YU C, ZENG D, FAN Q, et al. The distinct role of boron doping in Sn3O4 microspheres for synergistic removal of phenols and Cr(Ⅵ) in simulated wastewater[J]. Environmental Science: Nano, 2020, 7(1): 286-303. [15] ZHA R, SHI T, HE L, et al. Synergetic excitonic and defective effects in confined SnO2/α-Fe2O3 nanoheterojunctions for efficient photocatalytic molecular oxygen activation[J]. Chemical Engineering Journal, 2021, 421: Article 129883. [16] CHEN X, LIU L, YU P Y, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011, 331(6018): 746-750. [17] FAN C M, PENG Y, ZHU Q, et al. Synproportionation reaction for the fabrication of Sn2+ self-doped SnO2-x nanocrystals with tunable band structure and highly efficient visible light photocatalytic activity[J]. The Journal of Physical Chemistry C, 2013, 117(46): 24157-24166. [18] SHAO M, LIU J, DING W, et al. Oxygen vacancy engineering of self-doped SnO2-x nanocrystals for ultrasensitive NO2 detection[J]. Journal of Materials Chemistry C, 2020, 8(2): 487-494. [19] DENG H, LAMELAS F J, HOSSENLOPP J M. Synthesis of tin oxide nanocrystalline phases via use of tin(Ⅱ) halide precursors[J]. Chemistry of Materials, 2003, 15(12): 2429-2436. [20] SONG M, WU Y, ZHAO Y, et al. Structural insight on defect-rich tin oxide for smart band alignment engineering and tunable visible-light-driven hydrogen evolution[J]. Inorganic Chemistry, 2020, 59(5): 3181-3192. [21] GURLO A. Interplay between O2 and SnO2: oxygen ionosorption and spectroscopic evidence for adsorbed oxygen[J]. ChemPhysChem, 2006, 7(10): 2041-2052. [22] UCHIYAMA H, SHIRAI Y, KOZUKA H. Formation of spherical SnO2 particles consisting of nanocrystals from aqueous solution of SnCl4 containing citric acid via hydrothermal process[J]. Journal of Crystal Growth, 2011, 319(1): 70-78. [23] LI J, WU Y, YANG M, et al. Electrospun Fe2O3 nanotubes and Fe3O4 nanofibers by citric acid sol-gel method[J]. Journal of the American Ceramic Society, 2017, 100(12): 5460-5470. [24] KARMAOUI M, JORGE A B, MCMILLAN P F, et al. One-step synthesis, structure, and band gap properties of SnO2 nanoparticles made by a low temperature nonaqueous sol-gel technique[J]. ACS Omega, 2018, 3(10): 13227-13238. [25] RIBEIRO C, LEE E J H, GIRALDI T R, et al. Study of synthesis variables in the nanocrystal growth behavior of tin oxide processed by controlled hydrolysis[J]. The Journal of Physical Chemistry B, 2004, 108(40): 15612-15617. [26] SIKHWIVHILU L M, PILLAI S K, HILLIE T K. Influence of citric acid on SnO2 nanoparticles synthesized by wet chemical processes[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(6): 4988-4994. [27] DONG W, SUN Y, HUA W, et al. Preparation of secondary mesopores in mesoporous anatase-silica nanocomposites with unprecedented-high photocatalytic degradation performances[J]. Advanced Functional Materials, 2016, 26(6): 964-976. [28] ZHAN H, DENG C, SHI X L, et al. Correlation between the photocatalysis and growth mechanism of SnO2 nanocrystals[J]. Journal of Physics D: Applied Physics, 2020, 53(15): Article 154005. [29] ZHAN H, DENG C, LIU Q, et al. Growth process, photoluminescence property and photocatalytic activity of SnO2 nanorods[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(8): 1605-1612. [30] GAUR L K, CHANDRA MATHPAL M, KUMAR P, et al. Observations of phonon anharmonicity and microstructure changes by the laser power dependent Raman spectra in Co doped SnO2 nanoparticles[J]. Journal of Alloys and Compounds, 2020, 831: Article 154836. [31] LIU Q, ZHAN H, HUANG X, et al. High visible light photocatalytic activity of SnO2-x nanocrystals with rich oxygen vacancy[J]. European Journal of Inorganic Chemistry. 2021, doi: 10.1002/ejic.202100617. [32] ZENG D, YU C, FAN Q, et al. Theoretical and experimental research of novel fluorine doped hierarchical Sn3O4 microspheres with excellent photocatalytic performance for removal of Cr (Ⅵ) and organic pollutants[J]. Chemical Engineering Journal, 2020, 391: Article 123607. [33] XU Y, ZHENG L, YANG C, et al. Oxygen vacancies enabled porous SnO2 thin films for highly sensitive detection of triethylamine at room temperature[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20704-20713. |