[1] JAIN I P, JAIN P, JAIN A. Novel hydrogen storage materials: a review of lightweight complex hydrides[J]. Journal of Alloys and Compounds, 2010, 503(2): 303-339. [2] ZHANG B, WU Y. Recent advances in improving performances of the lightweight complex hydrides Li-Mg-N-H system[J]. Progress in Natural Science: Materials International, 2017, 27(1): 21-33. [3] WANG J H, LIU T, WU G T, et al. Potassium-modified Mg(NH2)2/2LiH system for hydrogen storage[J]. Angewandte Chemie International Edition, 2009, 48(32): 5828-5832. [4] LI C, LIU Y F, MA R J, et al. Superior dehydrogenation/hydrogenation kinetics and long-term cycling performance of K and Rb cocatalyzed Mg(NH2)2-2LiH system[J]. ACS Applied Materials & Interfaces, 2014, 6(19): 17024-17033. [5] ZHANG B, YUAN J G, WU Y. Catalytic effects of Mg(BH4)2 on the desorption properties of 2LiNH2-MgH2 mixture[J]. International Journal of Hydrogen Energy, 2019, 44(35): 19294-19301. [6] QIU S J, GAO W, MA X Y, et al. Enhanced thermal diffusivity and dehydrogenation of 2LiNH2MgH2 by doping with super activated carbon[J]. International Journal of Hydrogen Energy, 2018, 43(30): 13975-13980. [7] YAN M Y, SUN F, LIU X P, et al. Effects of compaction pressure and graphite content on hydrogen storage properties of Mg(NH2)2-2LiH hydride[J]. International Journal of Hydrogen Energy, 2014, 39(34): 19656-19661. [8] MA L P, DAI H B, LIANG Y, et al. Catalytically enhanced hydrogen storage properties of Mg(NH2)2 + 2LiH material by graphite-supported Ru nanoparticles[J]. The Journal of Physical Chemistry C, 2008, 112(46): 18280-18285. [9] ZHU X L, HAN S M, ZHAO X, et al. Improving hydrogen storage performance of Li-Mg-N-H system by adding niobium hydride[J]. Rare Metals, 2014, 33(1): 86-90. [10] SHAHI R R, YADAV T P, SHAZ M A, et al. Studies on dehydrogenation characteristic of Mg(NH2)2/LiH mixture admixed with vanadium and vanadium based catalysts (V, V2O5 and VCl3)[J]. International Journal of Hydrogen Energy, 2010, 35(1): 238-246. [11] SHAHI R R, MISHRA R K, SHUKLA V, et al. Enhanced hydrogenation characteristics of Li-Mg-N-H system catalyzed with TiO2 nanoparticles; a mechanistic approach[J]. International Journal of Hydrogen Energy, 2017, 42(49): 29350-29359. [12] RIJSSENBEEK J, GAO Y, HANSON J, et al. Crystal structure determination and reaction pathway of amide-hydride mixtures[J]. Journal of Alloys and Compounds, 2008, 454(1/2): 233-244. [13] WANG Y, CHOU M Y. First-principles study of cation and hydrogen arrangements in the Li-Mg-N-H hydrogen storage system[J]. Physical Review B, 2007, 76: 014116. [14] VELIKOKHATNYI O I, KUMTA P N. Energetics of the lithium-magnesium imide-magnesium amide and lithium hydride reaction for hydrogen storage: an ab initio study[J]. Materials Science and Engineering: B, 2007, 140(1/2): 114-122. [15] WANG Q, CHEN Y G, GAI J G, et al. Role of amino anion in metal amides/imides for hydrogen storage: a first principle study[J]. The Journal of Physical Chemistry C, 2008, 112(46): 18264-18269. [16] WANG Q, CHEN Y G, WU C L, et al. Electronic structure, chemical bond and thermal stability of hydrogen absorber Li2MgN2H2[J]. Chinese Science Bulletin, 2009, 54(3): 497-503. [17] WANG Q, CHEN Y G, NIU G, et al. Nature of Ti species in the Li-Mg-N-H system for hydrogen storage: a theoretical and experimental investigation[J]. Industrial & Engineering Chemistry Research, 2009, 48(11): 5250-5254. [18] CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Zeitschrift Für Kristallographie - Crystalline Materials, 2005, 220(5/6): 567-570. [19] HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B): B864-B871. [20] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [21] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, 1990, 41(11): 7892-7895. [22] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192. [23] PFROMMER B G, CÔTÉ M, LOUIE S G, et al. Relaxation of crystals with the quasi-Newton method[J]. Journal of Computational Physics, 1997, 131(1): 233-240. [24] HAMMER B, HANSEN L B, NØRSKOV J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals[J]. Physical Review B, 1999, 59(11): 7413-7421. [25] FRANCIS G P, PAYNE M C. Finite basis set corrections to total energy pseudopotential calculations[J]. Journal of Physics: Condensed Matter, 1990, 2(19): 4395-4404. [26] 路广霞,张 辉,张国英,等.LiNH2储氢材料中间隙H与掺杂原子交互作用对其释氢性能影响机理研究[J].物理学报,2011,60(11):117101. LU G X, ZHANG H, ZHANG G Y, et al. Mechanism of the influence of the interaction between interstitial H atom and doped atom on the dehydrogenation performance of LiNH2[J]. Acta Physica Sinica, 2011, 60(11): 117101(in Chinese). [27] 宋庆功,赵俊普,顾威风,等.基于密度泛函理论的La掺杂γ-TiAl体系结构延性与电子性质[J].物理学报,2017,66(6):066103. SONG Q G, ZHAO J P, GU W F, et al. Ductile and electronic properties of La-doped gamma-TiAl systems based on density functional theory[J]. Acta Physica Sinica, 2017, 66(6): 066103(in Chinese). |