[1] 王 涛,贾志泰,李 阳,等.单晶光纤制备及高温传感器研究进展[J].人工晶体学报,2021,50(9):1603-1624.
WANG T, JIA Z T, LI Y, et al. Single-crystal fiber growth and single-crystal fiber high-temperature sensors: review and perspective[J]. Journal of Synthetic Crystals, 2021, 50(9): 1603-1624(in Chinese).
[2] LIU B, KARKI D, BERA S, et al. Fabrication and application of single crystal fiber via laser heated pedestal growth system[C]//Fiber Optic Sensors and Applications XVII. April 12-17, 2021. Online Only, USA. SPIE, 2021.
[3] 原东升,贾志泰,舒 骏,等.微下拉晶体光纤生长设备研制及YAG单晶生长[J].人工晶体学报,2014,43(6):1317-1322.
YUAN D S, JIA Z T, SHU J, et al. Development of micro-pulling-down equipment for crystal fiber growth and YAG single crystal growth[J]. Journal of Synthetic Crystals, 2014, 43(6): 1317-1322(in Chinese).
[4] ANDRADE E N D C. The flow in metals under large constant stresses[J]. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character, 1914, 90(619): 329-342.
[5] SANGLA D, MARTIAL I, AUBRY N, et al. High power laser operation with crystal fibers[J]. Applied Physics B, 2009, 97(2): 263-273.
[6] DLEN X, PIEHLER S, DIDIERJEAN J, et al. 250 W single-crystal fiber Yb:YAG laser[J]. Optics Letters, 2012, 37(14): 2898-2900.
[7] SOLEIMANI N, PONTING B, GEBREMICHAEL E, et al. Coilable single crystals fibers of doped-YAG for high power laser applications[J]. Journal of Crystal Growth, 2014, 393: 18-22.
[8] KIM W, SHAW B, BAYYA S, et al. Crystal fiber lasers[C]//Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications Ⅺ. August 6-10, 2017. San Diego, USA. SPIE, 2017.
[9] 王 涛,张 健,张 娜,等.单晶光纤制备及单晶光纤激光器研究进展[J].激光与光电子学进展,2019,56(17):170611.
WANG T, ZHANG J, ZHANG N, et al. Research progress in preparation of single crystal fiber and fiber lasers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170611(in Chinese).
[10] DAI Y, ZHANG Z H, WANG Y X, et al. Growth of Tm:Lu3Al5O12 single crystal fiber from transparent ceramics by laser-heated pedestal method and its spectral properties[J]. Optical Materials, 2021, 111: 110674.
[11] WANG T, ZHANG J, YANG L, et al. Fabrication and sensitivity optimization of garnet crystal-fiber ultrasonic temperature sensor[J]. Journal of Materials Chemistry C, 2020, 8(11): 3830-3837.
[12] WANG Y X, WANG S Z, WANG J Y, et al. High-efficiency ~2 μm CW laser operation of LD-pumped Tm3+:CaF2 single-crystal fibers[J]. Optics Express, 2020, 28(5): 6684.
[13] ZHAO Y G, WANG L, CHEN W D, et al. 35 W continuous-wave Ho:YAG single-crystal fiber laser[J]. High Power Laser Science and Engineering, 2020, 8: e25.
[14] LIU J, DONG J F, WANG Y Y, et al. Laser operation of Tm:LuAg single-crystal fiber grown by the micro-pulling down method[J]. Crystals, 2021, 11(8): 898.
[15] ZHANG N, YIN Y Q, ZHANG J, et al. Optimized growth of high length-to-diameter ratio Lu2O3 single crystal fibers by the LHPG method[J]. Cryst Eng Comm, 2021, 23(7): 1657-1662.
[16] WANG T, WANG H Y, ZHANG J, et al. Design and directional growth of (Mg1-xZnx)(Al1-yCry)2O4 single-crystal fibers for high-sensitivity and high-temperature sensing based on lattice doping engineering and acoustic anisotropy[J]. Advanced Functional Materials, 2021, 31(42): 2103224.
[17] AN N, ZHOU H L, ZHU K S, et al. Improved temperature sensing performance of YAG:Ho3+/Yb3+ by doping Ce3+ ions based on up-conversion luminescence[J]. Journal of Alloys and Compounds, 2020, 843: 156057.
[18] ANDREETA M R B, HERNANDES A C. Laser-heated pedestal growth of oxide fibers[M].Berlin: Springer Handbook of Crystal Growth, 2010: 393-432. |