[1] GUSTAFSSON M V, YANKOWITZ M, FORSYTHE C, et al. Ambipolar Landau levels and strong band-selective carrier interactions in monolayer WSe2[J]. Nature Materials, 2018, 17(5): 411-415. [2] RIGOSI A F, HILL H M, LI Y L, et al. Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS2/WS2 and MoSe2/WSe2[J]. Nano Letters, 2015, 15(8): 5033-5038. [3] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. [4] HE J, LILLEY C M. Surface effect on the elastic behavior of static bending nanowires[J]. Nano Letters, 2008, 8(7): 1798-1802. [5] DEAN C R, YOUNG A F, MERIC I, et al. Boron nitride substrates for high-quality graphene electronics[J]. Nature Nanotechnology, 2010, 5(10): 722-726. [6] NOVOSELOV K S, FAL'KO V I, COLOMBO L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200. [7] STOLLER M D, PARK S, ZHU Y W, et al. Graphene-based ultracapacitors[J]. Nano Letters, 2008, 8(10): 3498-3502. [8] ZHANG Y, TAN Y W, STORMER H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438(7065): 201-204. [9] AKBARI A, CUNNING B V, JOSHI S R, et al. Highly ordered and dense thermally conductive graphitic films from a graphene oxide/reduced graphene oxide mixture[J]. Matter, 2020, 2(5): 1198-1206. [10] KANDASAMY S K, KANDASAMY K. Recent advances in electrochemical performances of graphene composite (graphene-polyaniline/polypyrrole/activated carbon/carbon nanotube) electrode materials for supercapacitor: a review[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28(3): 559-584. [11] 张丽丽,夏 桐,刘桂安,等.第一性原理方法研究N-Pr共掺杂ZnO的电子结构和光学性质[J].物理学报,2019,68(1):017401. ZHANG L L, XIA T, LIU G A, et al. Electronic and optical properties of N-Pr co-doped anatase TiO2 from first-principles[J]. Acta Physica Sinica, 2019, 68(1): 017401(in Chinese). [12] 汪志刚,曾祥明,张 杨,等.应变调控单层氧化锌能带结构的第一性原理研究[J].物理化学学报,2015,31(9):1677-1682. WANG Z G, ZENG X M, ZHANG Y, et al. First-principles study of effect of strain on the band structure of ZnO monolayer[J]. Acta Physico-Chimica Sinica, 2015, 31(9): 1677-1682(in Chinese). [13] FREEMAN C L, CLAEYSSENS F, ALLAN N L, et al. Graphitic nanofilms as precursors to wurtzite films: theory[J]. Physical Review Letters, 2006, 96(6): 066102. [14] TUSCHE C, MEYERHEIM H L, KIRSCHNER J. Observation of depolarized ZnO(0001) monolayers: formation of unreconstructed planar sheets[J]. Physical Review Letters, 2007, 99(2): 026102. [15] FARKOUS M, BIKEROUIN M, PHUNG H T T, et al. Electronic and optical properties of layered van der Waals heterostructure based on MS2 (M=Mo, W) monolayers[J]. Materials Research Express, 2019, 6(6): 065060. [16] 姚文乾,孙健哲,陈建毅,等.二维平面和范德瓦耳斯异质结的可控制备与光电应用[J].物理学报,2021,70(2):180-198. YAO W Q, SUN J Z, CHEN J Y, et al. Controllable preparation and photoelectric applications of two-dimensional in-plane and van der Waals heterostructures[J]. Acta Physica Sinica, 2021, 70(2): 180-198(in Chinese). [17] XU P T, TANG Q, ZHOU Z. Structural and electronic properties of graphene-ZnO interfaces: dispersion-corrected density functional theory investigations[J]. Nanotechnology, 2013, 24(30): 305401. [18] LIU S, LIAO Q L, LU S N, et al. Strain modulation in graphene/ZnO nanorod film Schottky junction for enhanced photosensing performance[J]. Advanced Functional Materials, 2016, 26(9): 1347-1353. [19] LI Y P, LI Y F, ZHANG J H, et al. Influence of B doping on the carrier transport mechanism and barrier height of graphene/ZnO Schottky contact[J]. Journal of Physics D: Applied Physics, 2018, 51(9): 095104. [20] 马浩浩,张显斌,魏旭艳,等.非金属元素掺杂二硒化钨/石墨烯异质结对其肖特基调控的理论研究[J].物理学报,2020,69(11):117101. MA H H, ZHANG X B, WEI X Y, et al. Theoretical study on Schottky regulation of WSe2/graphene heterostructure doped with nonmetallic elements[J]. Acta Physica Sinica, 2020, 69(11): 117101(in Chinese). [21] 陶鹏程,黄 燕,周孝好,等.掺杂对金属-MoS2界面性质调制的第一性原理研究[J].物理学报,2017,66(11):367-374. TAO P C, HUANG Y, ZHOU X H, et al. First principles investigation of the tuning in metal-MoS2 interface induced by doping[J]. Acta Physica Sinica, 2017, 66(11): 367-374(in Chinese). [22] GAO H Y, WANG J Y, JIA M Y, et al. Two-phase interface-facilitated synthesis of graphene-like carbon nanosheets and their interfacial assembly behaviors[J]. Chemical Physics, 2019, 516: 132-138. [23] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [24] ORTMANN F, BECHSTEDT F, SCHMIDT W G. Semiempirical van der Waals correction to the density functional description of solids and molecular structures[J]. Physical Review B, 2006, 73: 205101. [25] GAO X, SHEN Y Q, MA Y Y, et al. ZnO/g-GeC van der Waals heterostructure: novel photocatalyst for small molecule splitting[J]. Journal of Materials Chemistry C, 2019, 7(16): 4791-4799. [26] EBNONNASIR A, NARAYANAN B, KODAMBAKA S, et al. Tunable MoS2 bandgap in MoS2-graphene heterostructures[J]. Applied Physics Letters, 2014, 105(3): 031603. [27] MAROM N, TKATCHENKO A, SCHEFFLER M, et al. Describing both dispersion interactions and electronic structure using density functional theory: the case of metal-phthalocyanine dimers[J]. Journal of Chemical Theory and Computation, 2010, 6(1): 81-90. [28] CHOUDHARY K, TAVAZZA F. Convergence and machine learning predictions of Monkhorst-Pack k-points and plane-wave cut-off in high-throughput DFT calculations[J]. Computational Materials Science, 2019, 161: 300-308. [29] 危 阳,马新国,祝 林,等.二硫化钼/石墨烯异质结的界面结合作用及其对带边电位影响的理论研究[J].物理学报,2017,66(8):087101. WEI Y, MA X G, ZHU L, et al. Interfacial cohesive interaction and band modulation of two-dimensional MoS2/graphene heterostructure[J]. Acta Physica Sinica, 2017, 66(8): 087101(in Chinese). [30] BJÖRKMAN T, GULANS A, KRASHENINNIKOV A V, et al. van der Waals bonding in layered compounds from advanced density-functional first-principles calculations[J]. Physical Review Letters, 2012, 108(23): 235502. [31] KARTAMYSHEV A I, VU T V, AHMAD S, et al. First-principles calculations to investigate electronic properties of ZnO/PtSSe van der Waals heterostructure: effects of vertical strain and electric field[J]. Chemical Physics, 2021, 551: 111333. [32] CASTRO NETO A H, GUINEA F, PERES N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1): 109-162. [33] SUN M L, CHOU J P, REN Q Q, et al. Tunable Schottky barrier in van der Waals heterostructures of graphene and g-GaN[J]. Applied Physics Letters, 2017, 110(17): 173105. [34] TUNG R T. The physics and chemistry of the Schottky barrier height[J]. Applied Physics Reviews, 2014, 1(1): 011304. |