[1] LUO H J, GAO Y F, ZHANG Z T. VO2 thermochromic smart windows: from nanoparticles to flexible foils[J]. Chinese Science Bulletin, 2015, 60(25): 2425-2437. [2] 赵佳明,边继明,骆英民,等.用于智能激光防护武器的二氧化钒薄膜研究进展[J].兵器材料科学与工程,2011,34(2):102-106. ZHAO J M, BIAN J M, LUO Y M, et al. Recent research progress in VO2 thin films for intelligent laser protection weapons[J]. Ordnance Material Science and Engineering, 2011, 34(2): 102-106(in Chinese). [3] LU S W, HOU L S, GAN F X. Surface analysis and phase transition of gel-derived VO2 thin films[J]. Thin Solid Films, 1999, 353(1/2): 40-44. [4] BAIK J M, KIM M H, LARSON C, et al. Pd-sensitized single vanadium oxide nanowires: highly responsive hydrogen sensing based on the Metal-Insulator transition[J]. Nano Letters, 2009, 9(12): 3980-3984. [5] ZHANG Z, ZUO F, WAN C H, et al. Evolution of metallicity in vanadium dioxide by creation of oxygen vacancies[J]. Physical Review Applied, 2017, 7(3): 034008. [6] JIN P, NAKAO S, TANEMURA S. Tungsten doping into vanadium dioxide thermochromic films by high-energy ion implantation and thermal annealing[J]. Thin Solid Films, 1998, 324(1/2): 151-158. [7] WU Y, FAN L, LIU Q, et al. Decoupling the lattice distortion and charge doping effects on the phase transition behavior of VO2 by titanium (Ti4+) doping[J]. Scientific Reports, 2015, 5: 9328. [8] BÉTEILLE F, LIVAGE J. Optical switching in VO2 thin films[J]. Journal of Sol-Gel Science and Technology, 1998, 13(1): 915-921. [9] CHENG Y L, ZHANG X Q, FANG C Q, et al. Synthesis, structure and properties of printable W-doped thermochromic VO2 with a low phase transition temperature[J]. Ceramics International, 2018, 44(16): 20084-20092. [10] PINTCHOVSKI F, GLAUNSINGER W S, NAVROTSKY A. Experimental study of the electronic and lattice contributions to the VO2 transition[J]. Journal of Physics and Chemistry of Solids, 1978, 39(9): 941-949. [11] WANG L, HAO Y Q, MA W, et al. Improving phase transition temperature of VO2 via Ge doping: a combined experimental and theoretical study[J]. Rare Metals, 2021, 40(5): 1337-1346. [12] KRAMMER A, MAGREZ A, VITALE W A, et al. Elevated transition temperature in Ge doped VO2 thin films[J]. Journal of Applied Physics, 2017, 122(4): 045304. [13] HUANG Z Y, WU Z M, JI C H, et al. Improvement of phase transition properties of magnetron sputtered W-doped VO2 films by post-annealing approach[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(5): 4150-4160. [14] MOLAMOHAMMADI M, LUNA C, ARMAN A, et al. Preparation and magnetoresistance behavior of nickel nanoparticles embedded in hydrogenated carbon film[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(9): 6814-6818. [15] NARAYAN J, BHOSLE V M. Phase transition and critical issues in structure-property correlations of vanadium oxide[J]. Journal of Applied Physics, 2006, 100(10): 103524. [16] RUZMETOV D, ZAWILSKI K T, NARAYANAMURTI V, et al. Structure-functional property relationships in rf-sputtered vanadium dioxide thin films[J]. Journal of Applied Physics, 2007, 102(11): 113715. [17] BRASSARD D, FOURMAUX S, JEAN-JACQUES M, et al. Grain size effect on the semiconductor-metal phase transition characteristics of magnetron-sputtered VO2 thin films[J]. Applied Physics Letters, 2005, 87(5): 051910. [18] SUN C, YAN L M, YUE B H, et al. The modulation of metal-insulator transition temperature of vanadium dioxide: a density functional theory study[J]. J Mater Chem C, 2014, 2(43): 9283-9293. [19] YUAN X,ZHANG Y B, ABTEW T A, et al. VO2: Orbital competition, magnetism, and phase stability[J].Materials Science,2012, 86(23):235103-235103. [20] AETUKURI N B, GRAY A X, DROUARD M, et al. Control of the metal-insulator transition in vanadium dioxide by modifying orbital occupancy[J]. Nature Physics, 2013, 9(10): 661-666. [21] LYSENKO S, VIKHNIN V, FERNANDEZ F, et al. Photoinduced insulator-to-metal phase transition in VO2 crystalline films and model of dielectric susceptibility[J]. Physical Review B, 2007, 75(7): 075109. [22] JIAN J, WANG X J, LI L G, et al. Continuous tuning of phase transition temperature in VO2 thin films on c-cut sapphire substrates via strain variation[J]. ACS Applied Materials & Interfaces, 2017, 9(6): 5319-5327. |