[1] XU Q H, CHEN Q Y. Energy transition strategy of Chinese oil&gas companies and their green financial routes under the carbon neutrality tendency(Ⅱ)[J]. China Oil & Gas, 2021(2): 35-40. [2] 姜华伟,刘亚飞,陈彦彬,等.锂离子电池三元正极材料研究及应用进展[J].人工晶体学报,2018,47(10):2205-2211. JIANG H W, LIU Y F, CHEN Y B, et al. Research progress on the ternary layered oxide cathode materials of lithium ion battery[J]. Journal of Synthetic Crystals, 2018, 47(10): 2205-2211(in Chinese). [3] ROITZHEIM C, KUO L Y, SOHN Y J, et al. Boron in Ni-rich NCM811 cathode material: impact on atomic and microscale properties[J]. ACS Applied Energy Materials, 2022, 5(1): 524-538. [4] LI X L, JIN L B, SONG D W, et al. LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery[J]. Journal of Energy Chemistry, 2020, 40: 39-45. [5] SIM S J, LEE S H, JIN B S, et al. Use of carbon coating on LiNi0.8Co0.1Mn0.1O2 cathode material for enhanced performances of lithium-ion batteries[J]. Scientific Reports, 2020, 10: 11114. [6] HAN B H, KEY B, LAPIDUS S H, et al. From coating to dopant: how the transition metal composition affects alumina coatings on Ni-rich cathodes[J]. ACS Applied Materials & Interfaces, 2017, 9(47): 41291-41302. [7] WANG L F, LIU G Y, DING X N, et al. Simultaneous coating and doping of a nickel-rich cathode by an oxygen ion conductor for enhanced stability and power of lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(37): 33901-33912. [8] XIONG X H, WANG Z X, YAN G C, et al. Role of V2O5 coating on LiNiO-2 based materials for lithium ion battery[J]. Journal of Power Sources, 2014, 245: 183-193. [9] SCHIPPER F, BOUZAGLO H, DIXIT M, et al. From surface ZrO2 coating to bulk Zr doping by high temperature annealing of nickel-rich lithiated oxides and their enhanced electrochemical performance in lithium ion batteries[J]. Advanced Energy Materials, 2018, 8(4): 1701682. [10] ZHANG H L, XU J Q, ZHANG J J. Surface-coated LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode materials by Al2O3, ZrO2, and Li2O-2B2O3 thin-layers for improving the performance of lithium ion batteries[J]. Frontiers in Materials, 2019, 6: 309. [11] ZHOU L, TIAN M J, DENG Y L, et al. La2O3-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials with enhanced specific capacity and cycling stability for lithium-ion batteries[J]. Ceramics International, 2016, 42(14): 15623-15633. [12] CHEN Z X, ZHANG Q G, TANG W J, et al. Ultrahigh capacity retention of a Li2ZrO3-coated Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material through covalent interfacial engineering[J]. ACS Applied Energy Materials, 2021, 4(12): 13785-13795. [13] TANG W J, CHEN Z X, XIONG F, et al. An effective etching-induced coating strategy to shield LiNi0.8Co0.1Mn0.1O2 electrode materials by LiAlO2[J]. Journal of Power Sources, 2019, 412: 246-254. [14] ZHANG B, DONG P Y, TONG H, et al. Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 with lithium-reactive Li3VO4 coating[J]. Journal of Alloys and Compounds, 2017, 706: 198-204. [15] ZHANG J F, ZHANG J Y, OU X, et al. Enhancing high-voltage performance of Ni-rich cathode by surface modification of self-assembled NASICON fast ionic conductor LiZr2(PO4)3[J]. ACS Applied Materials & Interfaces, 2019, 11(17): 15507-15516. [16] WOO S W, MYUNG S T, BANG H, et al. Improvement of electrochemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple metal (Al, Mg) substitution[J]. Electrochimica Acta, 2009, 54(15): 3851-3856. [17] 李翠芹.CaMnO3基热电材料的制备与热电性能研究[D].贵阳:贵州大学,2019. LI C Q. Preparation and thermoelectric properties of CaMnO3based thermoelectric materials[D]. Guiyang: Guizhou University, 2019(in Chinese). [18] 李 欢,李翠芹,江祥红,等.Dy掺杂Ca1-xDyxMnO3(x=0,0.02,0.03,0.05,0.10)热电材料的Rietveld精修及高温热电性能研究[J].人工晶体学报,2020,49(2):312-318. LI H, LI C Q, JIANG X H, et al. Study on rietveld refinement and high-temperature thermoelectric properties of Dy doped Ca1-xDyxMnO3 (x=0, 0.02, 0.03, 0.05, 0.10) thermoelectric materials[J]. Journal of Synthetic Crystals, 2020, 49(2): 312-318(in Chinese). [19] 占望鹏.基于参数排序空间的粉末衍射晶体结构精修自动化方法研究[D].上海:上海大学,2016. ZHAN W P. Automated method for crystal structure refinement in powder diffraction based on parameters sorting space[D]. Shanghai: Shanghai University, 2016(in Chinese). [20] WU F, LIU N, CHEN L, et al. Improving the reversibility of the H2-H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability[J]. Nano Energy, 2019, 59: 50-57. |