JOURNAL OF SYNTHETIC CRYSTALS ›› 2023, Vol. 52 ›› Issue (6): 1067-1085.
• Reviews • Previous Articles Next Articles
SUI Zhanren1,2, XU Lingbo1,2, CUI Can1, WANG Rong2,3, YANG Deren2,3, PI Xiaodong2,3, HAN Xuefeng2,3
Received:2023-01-13
Online:2023-06-15
Published:2023-06-30
CLC Number:
SUI Zhanren, XU Lingbo, CUI Can, WANG Rong, YANG Deren, PI Xiaodong, HAN Xuefeng. Research Progress on Numerical Simulation of Single Crystal Silicon Carbide Prepared by Top-Seeded Solution Growth Method[J]. Journal of Synthetic Crystals, 2023, 52(6): 1067-1085.
| [1] OKUMURA H. Present status and future prospect of widegap semiconductor high-power devices[J]. Japanese Journal of Applied Physics, 2006, 45(10R): 7565. [2] BIELA J, SCHWEIZER M, WAFFLER S, et al. SiC versus Si—evaluation of potentials for performance improvement of inverter and DC-DC converter systems by SiC power semiconductors[J]. IEEE Transactions on Industrial Electronics, 2011, 58(7): 2872-2882. [3] MATSUNAMI H, KIMOTO T. Step-controlled epitaxial growth of SiC: high quality homoepitaxy[J]. Materials Science and Engineering: R: Reports, 1997, 20(3): 125-166. [4] 新华社.中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL].[2021-3-13].http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm. XINHUA NEWS AGENCY. Outline of the 14th five year plan for national economic and social development of the people's republic of China and the long range goals for 2035[EB/OL] [2021-3-13]. http://www.gov.cn/xinwen/202103/13/content_5592681.htm (in Chinese). [5] LIU Y L. Recent progress on single-crystal growth and epitaxial growth of 4H silicon carbide[J]. Solid State Phenomena, 2022, 332: 73-84. [6] YU Y J, BYEON D S, SHIN Y J, et al. Residual stress analysis of 4H-SiC crystals obtained by a top-seeded solution growth method[J]. CrystEngComm, 2017, 19(45): 6731-6735. [7] LI J J, YANG G, LIU X S, et al. Dislocations in 4H silicon carbide[J]. Journal of Physics D: Applied Physics, 2022, 55(46): 463001. [8] HYUN K, KIM S J, TAISHI T. Effect of cobalt addition to Si-Cr solvent in top-seeded solution growth[J]. Applied Surface Science, 2020, 513: 145798. [9] 罗 昊, 张序清, 杨德仁, 等. 碳化硅单晶生长用高纯碳化硅粉体的研究进展[J]. 人工晶体学报, 2021, 50(8): 1562-1574. LUO H, ZHANG X Q, YANG D R, et al. Research progress on high-purity SiC powder for single crystal SiC growth[J]. Journal of Synthetic Crystals, 2021, 50(8): 1562-1574 (in Chinese). [10] UJIHARA T, MAEKAWA R, TANAKA R, et al. Solution growth of high-quality 3C-SiC crystals[J]. Journal of Crystal Growth, 2008, 310(7/8/9): 1438-1442. [11] 王国宾, 李 辉, 盛 达, 等. 高温溶液法生长SiC单晶的研究进展[J]. 人工晶体学报, 2022, 51(1): 3-20. WANG G B, LI H, SHENG D, et al. Research progress on the growth of SiC single crystal via high temperature solution growth method[J]. Journal of Synthetic Crystals, 2022, 51(1): 3-20 (in Chinese). [12] CARTER C H Jr, TSVETKOV V F, GLASS R C, et al. Progress in SiC: from material growth to commercial device development[J]. Materials Science and Engineering: B, 1999, 61/62: 1-8. [13] HALDEN F A. Growth of silicon carbide crystals from solution in molten metal alloys[J]. Silicon Carbide: A High Temperature Semiconductor, 1959: 115. [14] YAKIMOVA R T, YANCHEV I Y. On the transport kinetics of silicon carbide in the silicon-scandium-carbon system[J]. Journal of Crystal Growth, 1981, 51(2): 223-226. [15] IVANTSOV V, DMITRIEV V. Dissolution and growth of silicon carbide crystals in melt-solutions[J]. Materials Science Forum, 1998, 264/265/266/267/268: 73-76. [16] NASIR KHAN M, NISHIZAWA S I, BAHNG W, et al. Liquid-phase epitaxy on 6H-SiC Acheson seed crystals in closed vessel[J]. Journal of Crystal Growth, 2000, 220(1/2): 75-81. [17] DUDLEY M, HUANG X R, HUANG W, et al. The mechanism of micropipe nucleation at inclusions in silicon carbide[J]. Applied Physics Letters, 1999, 75(6): 784-786. [18] KIMOTO T. Bulk and epitaxial growth of silicon carbide[J]. Progress in Crystal Growth and Characterization of Materials, 2016, 62(2): 329-351. [19] KATSUNO T, WATANABE Y, FUJIWARA H, et al. Analysis of surface morphology at leakage current sources of 4H-SiC Schottky barrier diodes[J]. Applied Physics Letters, 2011, 98(22): 222111. [20] YAMAMOTO K, NAGAYA M, WATANABE H, et al. Influence of threading dislocations on lifetime of gate thermal oxide[J]. Materials Science Forum, 2012, 717/718/719/720: 477-480. [21] KIMOTO T. Material science and device physics in SiC technology for high-voltage power devices[J]. Japanese Journal of Applied Physics, 2015, 54(4): 040103. [22] YAMAMOTO Y, HARADA S, SEKI K, et al. Low-dislocation-density 4H-SiC crystal growth utilizing dislocation conversion during solution method[J]. Applied Physics Express, 2014, 7(6): 065501. [23] YAMAMOTO Y, HARADA S, SEKI K, et al. High-efficiency conversion of threading screw dislocations in 4H-SiC by solution growth[J]. Applied Physics Express, 2012, 5(11): 115501. [24] MURAYAMA K, HORI T, HARADA S, et al. Two-step SiC solution growth for dislocation reduction[J]. Journal of Crystal Growth, 2017, 468: 874-878. [25] KAMEI K, KUSUNOKI K, YASHIRO N, et al. Solution growth of single crystalline 6H, 4H-SiC using Si-Ti-C melt[J]. Journal of Crystal Growth, 2009, 311(3): 855-858. [26] YASHIRO N, KUSUNOKI K, KAMEI K, et al. Solution growth and crystallinity characterization of bulk 6H-SiC[J]. Materials Science Forum, 2010, 645/646/647/648: 33-36. [27] KUSUNOKI K, YASHIRO N, OKADA N, et al. Growth of large diameter 4H-SiC by TSSG technique[J]. Materials Science Forum, 2013, 740/741/742: 65-68. [28] KUSUNOKI K, KAMEI K, OKADA N, et al. Top-seeded solution growth of 3 inch diameter 4H-SiC bulk crystal using metal solvents[J]. Materials Science Forum, 2014, 778/779/780: 79-82. [29] ZHANG Z S, CHEN L, DENG J, et al. Intrinsic ferromagnetism in 4H-SiC single crystal induced by Al-doping[J]. Applied Physics A, 2020, 126(9): 729. [30] WELLMANN P J. Review of SiC crystal growth technology[J]. Semiconductor Science and Technology, 2018, 33(10): 103001. [31] MERCIER F, DEDULLE J M, CHAUSSENDE D, et al. Coupled heat transfer and fluid dynamics modeling of high-temperature SiC solution growth[J]. Journal of Crystal Growth, 2010, 312(2): 155-163. [32] KUSUNOKI K, OKADA N, KAMEI K, et al. Top-seeded solution growth of three-inch-diameter 4H-SiC using convection control technique[J]. Journal of Crystal Growth, 2014, 395: 68-73. [33] UMEZAKI T, KOIKE D, HARADA S, et al. Analysis of the carbon transport near the growth interface with respect to the rotational speed of the seed crystal during top-seeded solution growth of SiC[J]. Japanese Journal of Applied Physics, 2016, 55(12): 125601. [34] HA M T, SHIN Y J, LEE M H, et al. Effects of the temperature gradient near the crystal-melt interface in top seeded solution growth of SiC crystal[J]. Physica Status Solidi (a), 2018, 215(20): 1701017. [35] MUKAIYAMA Y, IIZUKA M, VOROB'EV A, et al. Numerical investigation of the effect of shape change in graphite crucible during top-seeded solution growth of SiC[J]. Journal of Crystal Growth, 2017, 475: 178-185. [36] CHOI S H, KIM Y G, SHIN Y J, et al. The effect of stepped wall of the graphite crucible in top seeded solution growth of SiC crystal[J]. Materials Science Forum, 2018, 924: 27-30. [37] HORIUCHI T, WANG L, SEKIMOTO A, et al. The effect of crucible rotation and crucible size in top-seeded solution growth of single-crystal silicon carbide[J]. Crystal Research and Technology, 2019, 54(5): 1900014. [38] WANG L, SEKIMOTO A, TAKEHARA Y, et al. Optimal control of SiC crystal growth in the RF-TSSG system using reinforcement learning[J]. Crystals, 2020, 10(9): 791. [39] YU W C, ZHU C, TSUNOOKA Y, et al. Geometrical design of a crystal growth system guided by a machine learning algorithm[J]. CrystEngComm, 2021, 23(14): 2695-2702. [40] 张泽盛. 液相法碳化硅晶体生长及其物性研究[D]. 北京: 中国科学院物理研究所, 2020. ZHANG Z S. Studies of solution growth and properties of SiC crystal[D]. Beijing: Institute of Physics, Chinese Academy of Sciences, 2020 (in Chinese). [41] SCACE R I, SLACK G A. Solubility of carbon in silicon and germanium[J]. The Journal of Chemical Physics, 1959, 30(6): 1551-1555. [42] MITANI T, KOMATSU N, TAKAHASHI T, et al. Effect of aluminum addition on the surface step morphology of 4H-SiC grown from Si-Cr-C solution[J]. Journal of Crystal Growth, 2015, 423: 45-49. [43] MITANI T, KOMATSU N, TAKAHASHI T, et al. Growth rate and surface morphology of 4H-SiC crystals grown from Si-Cr-C and Si-Cr-Al-C solutions under various temperature gradient conditions[J]. Journal of Crystal Growth, 2014, 401: 681-685. [44] ZIENKIEWICZ O C, TAYLOR R L, ZHU J Z. The finite element method: its basis and fundamentals (Seventh Edition)[M]. Butterworth-Heinemann, 2013. [45] YAMAMOTO T, OKANO Y, UJIHARA T, et al. Global simulation of the induction heating TSSG process of SiC for the effects of Marangoni convection, free surface deformation and seed rotation[J]. Journal of Crystal Growth, 2017, 470: 75-88. [46] PARK T Y, SHIN Y J, HA M T, et al. Effect of radiation heat transfer on the control of temperature gradient in the induction heating furnace for growing single crystals[J]. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2019, 32(6): 522-527. [47] MERCIER F, NISHIZAWA S I. Comparative numerical study of the effects of rotating and traveling magnetic fields on the carbon transport in the solution growth of SiC crystals[J]. Journal of Crystal Growth, 2013, 362: 99-102. [48] WANG L, HORIUCHI T, SEKIMOTO A, et al. Three-dimensional numerical analysis of Marangoni convection occurring during the growth process of SiC by the RF-TSSG method[J]. Journal of Crystal Growth, 2019, 520: 72-81. [49] LEFEBURE J, DEDULLE J M, OUISSE T, et al. Modeling of the growth rate during top seeded solution growth of SiC using pure silicon as a solvent[J]. Crystal Growth & Design, 2012, 12(2): 909-913. [50] TAKEHARA Y, SEKIMOTO A, OKANO Y, et al. Bayesian optimization for a high-and uniform-crystal growth rate in the top-seeded solution growth process of silicon carbide under applied magnetic field and seed rotation[J]. Journal of Crystal Growth, 2020, 532: 125437. [51] BAUMGARTL J, BUDWEISER W, MÜLLER G, et al. Studies of bouyancy driven convection in a vertical cylinder with parabolic temperature profile[J]. Journal of Crystal Growth, 1989, 97(1): 9-17. [52] HAYASHI Y, MITANI T, KOMATSU N, et al. Control of temperature distribution to suppress macro-defects in solution growth of 4H-SiC crystals[J]. Journal of Crystal Growth, 2019, 523: 125151. [53] LEFEBURE J, DEDULLE J M, OUISSE T, et al. Growth rate prediction in SiC solution growth using silicon as solvent[J]. Materials Science Forum, 2012, 717/718/719/720: 69-72. [54] HA M T, SHIN Y J, BAE S Y, et al. Effect of hot-zone aperture on the growth behavior of SiC single crystal produced via top-seeded solution growth method[J]. Journal of the Korean Ceramic Society, 2019, 56(6): 589-595. [55] KOIKE D, UMEZAKI T, MURAYAMA K, et al. Control of interface shape by non-axisymmetric solution convection in top-seeded solution growth of SiC crystal[J]. Materials Science Forum, 2015, 821/822/823: 18-21. [56] LIU B T, YU Y, TANG X, et al. Optimization of crucible and heating model for large-sized silicon carbide ingot growth in top-seeded solution growth[J]. Journal of Crystal Growth, 2020, 533: 125406. [57] YOON J Y, LEE M H, KIM Y, et al. Enhancement in the rate of the top seeded solution growth of SiC crystals via a roughening of the graphite surface[J]. Japanese Journal of Applied Physics, 2017, 56(6): 065501. [58] BRICE J C, CAPPER P, JONES C L, et al. ACRT: a review of models[J]. Progress in Crystal Growth and Characterization, 1986, 13(3): 197-229. [59] SCHEEL H J, SCHULZ-DUBOIS E O. Flux growth of large crystals by accelerated crucible-rotation technique[J]. Journal of Crystal Growth, 1971, 8(3): 304-306. [60] KUSUNOKI K, KAMEI K, OKADA N, et al. Solution growth of SiC crystal with high growth rate using accelerated crucible rotation technique[J]. Materials Science Forum, 2006, 527/528/529: 119-122. [61] DAIKOKU H, KADO M, SEKI A, et al. Solution growth on concave surface of 4H-SiC crystal[J]. Crystal Growth & Design, 2016, 16(3): 1256-1260. [62] SCRIVEN L E, STERNLING C V. The Marangoni effects[J]. Nature, 1960, 187(4733): 186-188. [63] STERNLING C V, SCRIVEN L E. Interfacial turbulence: hydrodynamic instability and the Marangoni effect[J]. AIChE Journal, 1959, 5(4): 514-523. [64] MERCIER F, NISHIZAWA S I. Solution growth of SiC from silicon melts: influence of the alternative magnetic field on fluid dynamics[J]. Journal of Crystal Growth, 2011, 318(1): 385-388. [65] MERCIER F, NISHIZAWA S I. Numerical investigation of the growth rate enhancement of SiC crystal growth from silicon melts[J]. Japanese Journal of Applied Physics, 2011, 50(3R): 035603. [66] ARIYAWONG K, DEDULLE J M, CHAUSSENDE D. Electromagnetic enhancement of carbon transport in SiC solution growth process: a numerical modeling approach[J]. Materials Science Forum, 2014, 778/779/780: 71-74. [67] WANG L, HORIUCHI T, SEKIMOTO A, et al. Numerical investigation of the effect of static magnetic field on the TSSG growth of SiC[J]. Journal of Crystal Growth, 2018, 498: 140-147. [68] WANG L, TAKEHARA Y, SEKIMOTO A, et al. Numerical study of three-dimensional melt flows during the TSSG process of SiC crystal for the influence of input parameters of RF-coils and an external rotating magnetic field[J]. Crystals, 2020, 10(2): 111. [69] DURAND F, DUBY J C. Carbon solubility in solid and liquid silicon—a review with reference to eutectic equilibrium[J]. Journal of Phase Equilibria, 1999, 20(1): 61-63. [70] DAIKOKU H, KADO M, SAKAMOTO H, et al. Top-seeded solution growth of 4H-SiC bulk crystal using Si-Cr based melt[J]. Materials Science Forum, 2012, 717/718/719/720: 61-64. [71] GILLESSEN K, VON MÜNCH W. Growth of silicon carbide from liquid silicon by a travelling heater method[J]. Journal of Crystal Growth, 1973, 19(4): 263-268. [72] KADO M, DAIKOKU H, SAKAMOTO H, et al. High-speed growth of 4H-SiC single crystal using Si-Cr based melt[J]. Materials Science Forum, 2013, 740/741/742: 73-76. [73] KUSUNOKI K, KAMEI K, SEKI K, et al. Nitrogen doping of 4H-SiC by the top-seeded solution growth technique using Si-Ti solvent[J]. Journal of Crystal Growth, 2014, 392: 60-65. [74] JORDAN M I, MITCHELL T M. Machine learning: trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260. [75] ALZUBI J, NAYYAR A, KUMAR A. Machine learning from theory to algorithms: an overview[J]. Journal of Physics: Conference Series, 2018, 1142: 012012. [76] MAHESH B. Machine learning algorithms-a review[J]. International Journal of Science and Research (IJSR), 2020, 9: 381-386. [77] ARULKUMARAN K, DEISENROTH M P, BRUNDAGE M, et al. Deep reinforcement learning: a brief survey[J]. IEEE Signal Processing Magazine, 2017, 34(6): 26-38. [78] 竹原悠人, 岡野泰則.機械学習,数理的手法による TSSG-SiC 結晶成長の最適条件予測[J].日本結晶成長学会誌, 2020, 46(4): 46-4-06. YUREN T, TAIZE O. Predicting the optimal conditions for TSSG SiC crystal growth through mechanical learning and mathematical techniques[J]. Journal of the Japan Crystal Growth Society, 2020, 46 (4): 46-4-06(in Japanese). [79] TSUNOOKA Y, KOKUBO N, HATASA G, et al. High-speed prediction of computational fluid dynamics simulation in crystal growth[J]. CrystEngComm, 2018, 20(41): 6546-6550. [80] DANG Y F, ZHU C, IKUMI M, et al. Adaptive process control for crystal growth using machine learning for high-speed prediction: application to SiC solution growth[J]. CrystEngComm, 2021, 23(9): 1982-1990. [81] TAKEHARA Y, SEKIMOTO A, OKANO Y, et al. Explainable machine learning for the analysis of transport phenomena in top-seeded solution growth of SiC single crystal[J]. Journal of Thermal Science and Technology, 2021, 16(1): JTST0009. |
| [1] | LIN Haixin, GAO Dedong, WANG Shan, ZHANG Zhenzhong, AN Yan, ZHANG Wenyong. Multi-Physics Field Modeling and Optimization of Large-Size Czochralski Silicon Single Crystal Growth [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 17-33. |
| [2] | XU Wanli, GAN Yunhai, LI Yuewen, LI Bin, ZHENG Youdou, ZHANG Rong, XIU Xiangqian. High Rate HVPE Growth of High Uniformity 6-Inch GaN Thick Film [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 11-16. |
| [3] | CHU Dongdong, YANG Zhihua, PAN Shilie. Research Progress on Theoretical Design of Nonlinear Optical Materials via Data-Driven Approach [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1475-1493. |
| [4] | CHENG Youliang, DU Huibin, ZHANG Zhongbao, WANG Kai. Optimization of Electronic Transport Model and Device Performance in Tin Dioxide-Based Dye-Sensitized Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1629-1639. |
| [5] | LEI Shasha, GONG Qiaorui, ZHAO Chengchun, SUN Xiaohui, HANG Yin. Research Progress of Wide Bandgap Semiconductor ZnGa2O4 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1289-1301. |
| [6] | SUN Yuanlong, HU Ziyu, ZHENG Guozong. Growth and Photoelectric Properties Characterization of Large-Sized CH3NH3PbBr3 Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1313-1318. |
| [7] | MA Qisi, LIU Jianggao, SHE Weilin, CAO Cong, ZHANG Lichao, ZHAO Chao, FAN Yexia, ZHOU Zhenqi. Effect of Furnace Air Convection on the Temperature Field of Tellurium Zinc Cadmium Crystal Growth Based on CGSim Simulation [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1344-1351. |
| [8] | TAN Huiying, XING Xu, GE Peiqi, BI Wenbo. Simulation Analysis and Experimental Research on the Fracture Strength of Photovoltaic Monocrystalline Silicon Slicing Wafers [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1369-1377. |
| [9] | LING Hao, XU Le, CHEN Sixian, TANG Yuanzhi, SUN Haibin, GUO Xue, FENG Yurun, HU Qiangqiang. Growth and Optical Properties of Large Size CsCu2I3 Single Crystal by Solution Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1121-1126. |
| [10] | YU Hang, ZHAO Qi, QI Xiaofang, MA Wencheng, XU Yongkuan, HU Zhanggui. Effect of Internal Radiation Heat Transfer on the Thermal Stress in Growing Ti∶Sapphire Crystal by Heat Exchanger Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1212-1221. |
| [11] | XIE Guijiu, ZHANG Wenbin, WANG Yan, SONG Zhen, ZHANG Bing. Effect of SiC Wafer Grinding Process on Surface Damage [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 967-972. |
| [12] | SHI Yufeng, WANG Pengfei, MU Honghe, SU Liangbi. Numerical Simulation Investigation of Size Effect on Calcium Fluoride Crystals Grown by Vertical Bridgman Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 973-981. |
| [13] | LIU Ting, LI Xianhao, GUO Yaojun, KANG Sen, LU Yarong, HE Lijun. Nanoindentation Constitutive Equation of Sapphire Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 982-990. |
| [14] | GU Peng, LEI Pei, YE Shuai, HU Jin, WU Ge. Research Progress on the Growth of Silicon Carbide Single Crystal via Top-Seeded Solution Growth Method and Its Key Issues [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 741-759. |
| [15] | AI Jiaxin, WAN Hongping, QIAN Junbing, WEI Hua. Influence of VGF Indium Phosphide Single Crystal Furnace Heater on the Thermal Field Distribution in the Furnace [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 781-791. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS