[1] LUO H S, XU G S, XU H Q, et al. Compositional homogeneity and electrical properties of lead magnesium niobate titanate single crystals grown by a modified Bridgman technique[J]. Japanese Journal of Applied Physics, 2000, 39(9B): 5581-5585. [2] 郭益平, 罗豪甦, 徐海清, 等. 铅基弛豫型铁电单晶研究进展及其应用[J]. 人工晶体学报, 2001, 30(4): 330-336. GUO Y P, LUO H S, XU H Q, et al. Progresses in relaxor ferroelectric single crystals and their potential application[J]. Journal of Synthetic Crystals, 2001, 30(4): 330-336 (in Chinese). [3] PARK S E, SHROUT T R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals[J]. Journal of Applied Physics, 1997, 82(4): 1804-1811. [4] LI F, CABRAL M J, XU B, et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals[J]. Science, 2019, 364(6437): 264-268. [5] 张绍锋, 李 强, 杨 子. 准同型相界组分PMNT弛豫铁电单晶的畴结构与极化特性[J]. 人工晶体学报, 2009, 38(2): 411-415. ZHANG S F, LI Q, YANG Z. Study on domain morphology and polarizing characteristics of PMNT relaxor ferroelectric single crystal[J]. Journal of Synthetic Crystals, 2009, 38(2): 411-415 (in Chinese). [6] 罗豪甦, 焦 杰, 陈 瑞, 等. 弛豫铁电单晶的多功能特性及其器件应用[J]. 人工晶体学报, 2021, 50(5): 783-802. LUO H S, JIAO J, CHEN R, et al. Multifunctional properties and device applications of the relaxor ferroelectric single crystals[J]. Journal of Synthetic Crystals, 2021, 50(5): 783-802 (in Chinese). [7] 徐嘉林. 弛豫铁电单晶高压电响应及其在医用超声换能器中的应用研究[D]. 上海: 中国科学院上海硅酸盐研究所, 2021. XU J L. Study on high voltage electrical response of relaxor ferroelectric single crystal and its application in medical ultrasonic transducer[D].Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2021 (in Chinese). [8] JIANG Z B, HOU C X, FEI C L, et al. Effects of composition segregation in PMN-PT crystals on ultrasound transducer performance[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69(2): 795-802. [9] LV J B, XIE X, ZHU X L, et al. Cold ablated high frequency PMN-PT/epoxy 1-3 composite transducer[J]. Applied Acoustics, 2022, 188: 108540. [10] 徐晶晶. 不同电极特性对0.3Pb(Mg0.33Nb0.67)O3-0.7PbTiO3光伏性质影响的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. XU J J. Effects of different electrode characteristics on photovoltaic properties of 0.3Pb(Mg0.33Nb0.67)O3-0.7PbTiO3[D]. Harbin: Harbin Institute of Technology, 2019 (in Chinese). [11] 汤森进, 彭 帅, 邹 文. 溶剂对晶硅太阳能电池背银电极用银浆的性能影响[J]. 功能材料, 2016, 47(11): 11072-11075. TANG S J, PENG S, ZOU W. Effects of solvents on properties of silver paste for back electrode of silicon solar cells[J]. Journal of Functional Materials, 2016, 47(11): 11072-11075 (in Chinese). [12] GAO Y J, FENG J J, LIU F, et al. Effects of organic vehicle on the rheological and screen-printing characteristics of silver paste for LTCC thick film electrodes[J]. Materials, 2022, 15(5): 1953. [13] 谭浩巍, 谭富彬, 梁 琦, 等. 晶体硅太阳能电池正面银浆的作用机制[J]. 贵金属, 2022, 43(1): 91-95. TAN H W, TAN F B, LIANG Q, et al. The action mechanism of front silver paste upon crystal silicon solar cells[J]. Precious Metals, 2022, 43(1): 91-95 (in Chinese). [14] 王 靖, 李宏杰, 冀亮君. 氮化铝陶瓷用银浆的研制[J]. 陶瓷, 2023(9): 29-32+61. WANG J, LI H J, JI L J. Development of silver paste for aluminum nitride ceramics[J]. Ceramics, 2023(9): 29-32+61 (in Chinese). [15] SUN Y H, XUE H B, YANG C Q, et al. Improvement of wettability of Te-modified lead-free glass frit and its effect to front side silver paste in crystalline silicon solar cells[J]. Solar Energy Materials and Solar Cells, 2023, 253: 112214. [16] 赵 玲, 黄富春, 邬云川. PZT压电陶瓷谐振器用银电极浆料[J]. 贵金属, 2002, 23(2): 26-29. ZHAO L, HUANG F C, WU Y C. The silver paste applied to PZT piezoelectric ceramic resonator[J]. Precious Metals, 2002, 23(2): 26-29 (in Chinese). [17] 韦群燕. 高导电率精密印刷银浆制备技术研究[D]. 昆明: 昆明理工大学, 2007. WEI Q Y. Study on preparation technology of high conductivity precision printing silver paste[D]. Kunming: Kunming University of Science and Technology, 2007 (in Chinese). [18] ZHANG Z, NAKAMURA T, HANADA T. Research of silver sintering process and reliability for high temperature operation of SiC power devices[J]. Materials Science Forum, 2014, 778/779/780: 1114-1117. [19] SCOLA J, TASSART X, VILAR C, et al. Microstructure and electrical resistance evolution during sintering of a Ag nanoparticle paste[J]. Journal of Physics D: Applied Physics, 2015, 48(14): 145302. [20] CHIANG H W, CHUNG C L, CHEN L C, et al. Processing and shape effects on silver paste electrically conductive adhesives (ECAs)[J]. Journal of adhesion science and technology, 2005, 19: 565-578. [21] 张宇涛. 丝网印刷法制备稀土改性CuFe2O4尖晶石涂层研究[D]. 西安: 长安大学, 2022. ZHANG Y T. Study on preparation of rare earth modified CuFe2O4 spinel coating by screen printing method[D]. Xi’an: Chang’an University, 2022 (in Chinese). [22] DONG M, YE Z G. High-temperature solution growth and characterization of the piezo-/ferroelectric (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 [PMNT] single crystals[J]. Journal of Crystal Growth, 2000, 209: 81-90. [23] ZHANG Y C, YANG Z Z, YE W N, et al.Effect of excess Pb on microstructures and electrical properties of 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 ceramics[J].Journal of Materials Science Materials in Electronics, 2010, 22: 309-314. [24] LEE H J, KIM S W, RYU S S. Sintering behavior of aluminum nitride ceramics with MgO-CaO-Al2O3-SiO2 glass additive[J]. International Journal of Refractory Metals and Hard Materials, 2015, 53: 46-50. [25] KUMAZAWA T, SUZUKI H. Transient liquid phase sintering of high-purity mullite for high-temperature structural ceramics[J]. Ceramics International, 2021, 47(9): 12381-12388. |