[1] 李 天, 陈秀芳, 杨祥龙, 等. 锗氮共掺碳化硅晶体杂质浓度表征及其电学性质研究[J]. 无机材料学报, 2018, 33(5): 535-539. LI T, CHEN X F, YANG X L, et al. Characterization and electrical property of impurity concentration in Ge-N codoped SiC crystals[J]. Journal of Inorganic Materials, 2018, 33(5): 535-539 (in Chinese). [2] DAIKOKU H, KADO M, SEKI A, et al. Solution growth on concave surface of 4H-SiC crystal[J]. Crystal Growth & Design, 2016, 16(3): 1256-1260. [3] LIU C J, PENG T H, WANG B, et al. Progress in single crystal growth of wide bandgap semiconductor SiC[J]. Materials Science Forum, 2019, 954: 35-45. [4] YANG C Z, LIU G X, CHEN C M, et al. Numerical simulation of temperature fields in a three-dimensional SiC crystal growth furnace with axisymmetric and spiral coils[J]. Applied Sciences, 2018, 8(5): 705. [5] 彭同华, 刘春俊, 王 波, 等. 宽禁带半导体碳化硅单晶生长和物性研究进展[J]. 人工晶体学报, 2012, 41(增刊): 234-241. PENG T H, LIU C J, WANG B, et al. Growth and properties of wide bandgap semiconductor silicon carbide single crystal[J]. Journal of Synthetic Crystals, 2012, 41(supplement): 234-241 (in Chinese). [6] ZHANG S T, FU H, LI T E, et al. Study of effect of coil movement on growth conditions of SiC crystal[J]. Materials, 2022, 16(1): 281. [7] 刘宇浩. 碳化硅材料性能优异,应用迎来发展良机[J]. 中国集成电路, 2023, 32(5): 16-21. LIU Y H. Silicon carbide material has excellent performance and ushers in a good opportunity for development in the application field[J]. China Integrated Circuit, 2023, 32(5): 16-21 (in Chinese). [8] 程新华, 李安丽. 第三代半导体行业政策研究[J]. 现代工业经济和信息化, 2023, 13(4): 22-23+65. CHENG X H, LI A L. Policy research on the third generation semiconductor industry[J]. Modern Industrial Economy and Informationization, 2023, 13(4): 22-23+65 (in Chinese). [9] ZHANG N F, GAO Y, ZHU R Z, et al. Physical-vapor-transport growth of 4H silicon carbide single crystals by a tiling method[J]. Journal of Crystal Growth, 2022, 600: 126915. [10] MUSOLINO M, XU X P, WANG H, et al. Paving the way toward the world’s first 200 mm SiC pilot line[J]. Materials Science in Semiconductor Processing, 2021, 135: 106088. [11] SHIN H W, LEE H J, KIM H J, et al. The role of porous graphite plate for high quality SiC crystal growth by PVT method[J]. Materials Science Forum, 2016, 858: 113-116. [12] LEE H J, LEE H T, SHIN H W, et al. Effect of porous graphite for high quality SiC crystal growth by PVT method[J]. Materials Science Forum, 2015, 821/822/823: 43-46. [13] WELLMANN P J. Review of SiC crystal growth technology[J]. Semiconductor Science and Technology, 2018, 33(10): 103001. [14] 李 源, 石爱红, 孙彩华, 等. SiC晶体生长中气相组分输运特性[J]. 人工晶体学报, 2018, 47(11): 2260-2264. LI Y, SHI A H, SUN C H, et al. Vapor species transport characteristics in SiC crystal growth[J]. Journal of Synthetic Crystals, 2018, 47(11): 2260-2264 (in Chinese). [15] SELDER M, KADINSKI L, MAKAROV Y, et al. Global numerical simulation of heat and mass transfer for SiC bulk crystal growth by PVT[J]. Journal of Crystal Growth, 2000, 211(1/2/3/4): 333-338. [16] 卢嘉铮, 张 辉, 郑丽丽, 等. 大尺寸碳化硅晶体生长热-质输运过程建模及数值仿真[J]. 人工晶体学报, 2023, 52(4): 550-561. LU J Z, ZHANG H, ZHENG L L, et al. Modeling and numerical simulation of heat-mass transport process for large-size silicon carbide crystal growth[J]. Journal of Synthetic Crystals, 2023, 52(4): 550-561 (in Chinese). [17] ZHANG S T, FU G Q, CAI H D, et al. Design and optimization of thermal field for PVT method 8-inch SiC crystal growth[J]. Materials, 2023, 16(2): 767. [18] 隋占仁, 徐凌波, 崔 灿, 等. 数值模拟顶部籽晶溶液生长法制备单晶碳化硅的研究进展[J]. 人工晶体学报, 2023, 52(6): 1067-1085. SUI Z R, XU L B, CUI C, et al. Research progress on numerical simulation of single crystal silicon carbide prepared by top-seeded solution growth method[J]. Journal of Synthetic Crystals, 2023, 52(6): 1067-1085 (in Chinese). [19] YAMAMOTO T, ADKAR N, OKANO Y, et al. Numerical investigation of the transport phenomena occurring in the growth of SiC by the induction heating TSSG method[J]. Journal of Crystal Growth, 2017, 474: 50-54. [20] DANG Y F, ZHU C, IKUMI M, et al. Adaptive process control for crystal growth using machine learning for high-speed prediction: application to SiC solution growth[J]. CrystEngComm, 2021, 23(9): 1982-1990. [21] LUO H, HAN X F, HUANG Y C, et al. Numerical simulation of a novel method for PVT growth of SiC by adding a graphite block[J]. Crystals, 2021, 11(12): 1581. [22] CHEN X J, NISHIZAWA S I, KAKIMOTO K. Numerical simulation of a new SiC growth system by the dual-directional sublimation method[J]. Journal of Crystal Growth, 2010, 312(10): 1697-1702. [23] FAN W, QU H, CHANG S I, et al. Impacts of TaC coating on SiC PVT process control and crystal quality[J]. Materials Science Forum, 2019, 963: 22-25. [24] 卢嘉铮, 张 辉, 郑丽丽, 等. 大尺寸电阻加热式碳化硅晶体生长热场设计与优化[J]. 人工晶体学报, 2022, 51(3): 371-384. LU J Z, ZHANG H, ZHENG L L, et al. Thermal field design and optimization of resistance heated large-size SiC crystal growth system[J]. Journal of Synthetic Crystals, 2022, 51(3): 371-384 (in Chinese). [25] 王 宇, 顾 鹏, 付 君, 等. PVT法生长4H-SiC晶体及多型夹杂缺陷研究进展[J]. 人工晶体学报, 2022, 51(12): 2137-2152. WANG Y, GU P, FU J, et al. Research progress of 4H-SiC crystal grown by PVT method and multi-type inclusion defects[J]. Journal of Synthetic Crystals, 2022, 51(12): 2137-2152 (in Chinese). [26] LILOV S K. Study of the equilibrium processes in the gas phase during silicon carbide sublimation[J]. Materials Science and Engineering: B, 1993, 21(1): 65-69. [27] PONS M, ANIKIN M, CHOUROU K, et al. State of the art in the modelling of SiC sublimation growth[J]. Materials Science and Engineering: B, 1999, 61/62: 18-28. [28] LIU X, CHEN B Y, SONG L X, et al. The behavior of powder sublimation in the long-term PVT growth of SiC crystals[J]. Journal of Crystal Growth, 2010, 312(9): 1486-1490. [29] WANG X L, ZUNJARRAO S C, SINGH R P, et al. Advanced model of silicon carbide based uranium ceramic nuclear fuel production[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(2): 286-293. [30] SYVÄJÄRVI M, YAKIMOVA R, CIECHONSKI R R, et al. Comparison of SiC sublimation epitaxial growth in graphite and TaC coated crucibles[J]. Diamond and Related Materials, 2003, 12(10/11): 1936-1939. [31] XU B J, HAN X F, XU S C, et al. Optimization of the thermal field of 8-inch SiC crystal growth by PVT method with “3 separation heater method”[J]. Journal of Crystal Growth, 2023, 614: 127238. [32] 窦 瑛, 程红娟, 孟大磊. SiC单晶生长界面形状计算机模型的建立及验证[J]. 半导体技术, 2015, 40(11): 850-855. DOU Y, CHENG H J, MENG D L. Numerical modeling and experimental verification of computer model for SiC crystal shape of growth interface[J]. Semiconductor Technology, 2015, 40(11): 850-855 (in Chinese). [33] KULIK A V, BOGDANOV M V, KARPOV S Y, et al. Theoretical analysis of the mass transport in the powder charge in long-term bulk SiC growth[J]. Materials Science Forum, 2004, 457/458/459/460: 67-70. [34] 熊鳌魁, 王献孚, 吴静萍. 流体力学[M]. 北京: 科学出版社, 2016: 5-8. XIONG A K, WANG X F, WU J P. Fluid mechanics[M]. Beijing: Science Press, 2016: 5-8 (in Chinese). [35] KIMOTO T. Bulk and epitaxial growth of silicon carbide[J]. Progress in Crystal Growth and Characterization of Materials, 2016, 62(2): 329-351. [36] TAIROV Y M, TSVETKOV V F. Progress in controlling the growth of polytypic crystals[J]. Progress in Crystal Growth and Characterization, 1983, 7(1/2/3/4): 111-162. [37] TAIROV Y M, TSVETKOV V F. General principles of growing large-size single crystals of various silicon carbide polytypes[J]. Journal of Crystal Growth, 1981, 52: 146-150. |