JOURNAL OF SYNTHETIC CRYSTALS ›› 2024, Vol. 53 ›› Issue (1): 12-24.
• Reviews • Previous Articles Next Articles
FU Wenfeng1,2, ZHU Xupeng2, LIAO Jun2, RU Qiang1, XUE Shuwen2, ZHANG Jun2
Received:
2023-07-11
Online:
2024-01-15
Published:
2024-01-15
CLC Number:
FU Wenfeng, ZHU Xupeng, LIAO Jun, RU Qiang, XUE Shuwen, ZHANG Jun. Research Progress and Prospect of CZTS-Based Single Crystal Materials[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(1): 12-24.
[1] NAKAZAWA K I. Electrical and optical properties of stannite-type quaternary semiconductor thin films[J]. Japanese Journal of Applied Physics, 1988, 27(11R): 2094. [2] KATAGIRI H, SASAGUCHI N, HANDO S, et al. Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors[J]. Solar Energy Materials and Solar Cells, 1997, 49(1/2/3/4): 407-414. [3] GUO Q J, FORD G M, YANG W C, et al. Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals[J]. Journal of the American Chemical Society, 2010, 132(49): 17384-17386. [4] WANG W, WINKLER M T, GUNAWAN O, et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency[J]. Advanced Energy Materials, 2014, 4(7): 1301465. [5] GONG Y C, ZHANG Y F, JEDLICKA E, et al. Sn4+ precursor enables 12.4% efficient kesterite solar cell from DMSO solution with open circuit voltage deficit below 0.30 V[J]. Science China Materials, 2021, 64(1): 52-60. [6] YAN C, HUANG J L, SUN K W, et al. Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment[J]. Nature Energy, 2018, 3(9): 764-772. [7] LI J J, HUANG Y C, HUANG J L, et al. Defect control for 12.5% efficiency Cu2ZnSnSe4 Kesterite thin-film solar cells by engineering of local chemical environment[J]. Advanced Materials, 2020, 32(52):202005268. [8] ZHOU J Z, XU X, WU H J, et al. Control of the phase evolution of kesterite by tuning of the selenium partial pressure for solar cells with 13.8% certified efficiency[J]. Nature Energy, 2023, 8(5): 526-535. [9] Interactive Best Research-Cell Efficiency Chart, https://www.nrel.gov/PV/interactive-cell-efficiency.html. [10] LI J J, HUANG J L, CONG J L, et al. Large-grain spanning monolayer Cu2ZnSnSe4 thin-film solar cells grown from metal precursor[J]. Small, 2022, 18(9): 2105044. [11] CHEN W, DAHLIAH D, RIGNANESE G M, et al. Origin of the low conversion efficiency in Cu2ZnSnS4 kesterite solar cells: the actual role of cation disorder[J]. Energy & Environmental Science, 2021, 14(6): 3567-3578. [12] HAO X J, SUN K W, YAN C, et al. Large Voc improvement and 9.2% efficient pure sulfide Cu2ZnSnS4 solar cells by heterojunction interface engineering[C]//2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). June 5-10, 2016, Portland, OR, USA. IEEE, 2016: 2164-2168. [13] WALSH A, CHEN S Y, WEI S H, et al. Kesterite thin-film solar cells: advances in materials modelling of Cu2ZnSnS4[J]. Advanced Energy Materials, 2012, 2(4): 400-409. [14] GOKMEN T, GUNAWAN O, TODOROV T K, et al. Band tailing and efficiency limitation in kesterite solar cells[J]. Applied Physics Letters, 2013, 103(10): 103506. [15] SINGH O P, SHARMA A, GOUR K S, et al. Fast switching response of Na-doped CZTS photodetector from visible to NIR range[J]. Solar Energy Materials and Solar Cells, 2016, 157: 28-34. [16] SCHORR S. The crystal structure of kesterite type compounds: a neutron and X-ray diffraction study[J]. Solar Energy Materials and Solar Cells, 2011, 95: 1482-1488. [17] CHEN S Y, GONG X G, WALSH A, et al. Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of Ⅱ-Ⅵ and Ⅰ-Ⅲ-Ⅵ2 compounds[J]. Physical Review B, 2009, 79(16): 165211. [18] MITZI D B, GUNAWAN O, TODOROV T K, et al. The path towards a high-performance solution-processed kesterite solar cell[J]. Solar Energy Materials and Solar Cells, 2011, 95(6): 1421-1436. [19] DUAN B W, SHI J J, LI D M, et al. Underlying mechanism of the efficiency loss in CZTSSe solar cells: disorder and deep defects[J]. Science China Materials, 2020, 63(12): 2371-2396. [20] CHEN S Y, GONG X G, WALSH A, et al. Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: first-principles insights[J]. Applied Physics Letters, 2009, 94(4): 041903. [21] CHEN S Y, WALSH A, GONG X G, et al. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers[J]. Advanced Materials, 2013, 25(11): 1522-1539. [22] SAHU M, MINNAM REDDY V R, PARK C, et al. Review article on the lattice defect and interface loss mechanisms in kesterite materials and their impact on solar cell performance[J]. Solar Energy, 2021, 230: 13-58. [23] NWAMBAEKWE K C, JOHN-DENK V S, DOUMAN S F, et al. Crystal engineering and thin-film deposition strategies towards improving the performance of kesterite photovoltaic cell[J]. Journal of Materials Research and Technology, 2021, 12: 1252-1287. [24] NUGROHO H S, REFANTERO G, SEPTIANI N L W, et al. A progress review on the modification of CZTS(e)-based thin-film solar cells[J]. Journal of Industrial and Engineering Chemistry, 2022, 105: 83-110. [25] BAID M, HASHMI A, JAIN B, et al. A comprehensive review on Cu2ZnSnS4 (CZTS) thin film for solar cell: forecast issues and future anticipation[J]. Optical and Quantum Electronics, 2021, 53(11): 656. [26] PAL K, SINGH P, BHADURI A, et al. Current challenges and future prospects for a highly efficient (>20%) kesterite CZTS solar cell: a review[J]. Solar Energy Materials and Solar Cells, 2019, 196: 138-156. [27] FAN F J, WU L, GONG M, et al. Linearly arranged polytypic CZTSSe nanocrystals[J]. Scientific Reports, 2012, 2: 952. [28] WU L, WANG Q, ZHUANG T T, et al. A library of polytypic copper-based quaternary sulfide nanocrystals enables efficient solar-to-hydrogen conversion[J]. Nature Communications, 2022, 13: 5414. [29] NAGAOKA A, YOSHINO K, TANIGUCHI H, et al. Growth of Cu2ZnSnS4 single crystal by traveling heater method[J]. Japanese Journal of Applied Physics, 2011, 50(12R): 128001. [30] NAGAOKA A, KATSUBE R, NAKATSUKA S, et al. Growth and characterization of Cu2ZnSn(Sx Se1-x)4 single crystal grown by traveling heater method[J]. Journal of Crystal Growth, 2015, 423: 9-15. [31] NAGAOKA A, SCARPULLA M A, YOSHINO K. Na-doped Cu2ZnSnS4 single crystal grown by traveling-heater method[J]. Journal of Crystal Growth, 2016, 453: 119-123. [32] NAGAOKA A, MIYAKE H, TANIYAMA T, et al. Effects of sodium on electrical properties in Cu2ZnSnS4 single crystal[J]. Applied Physics Letters, 2014, 104(15): 152101. [33] ZHOU H P, SONG T B, HSU W C, et al. Rational defect passivation of Cu2ZnSn(S, Se)4 photovoltaics with solution-processed Cu2ZnSnS4: Na nanocrystals[J]. Journal of the American Chemical Society, 2013, 135(43): 15998-16001. [34] LIU B, GUO J, HAO R T, et al. Effect of Na doping on the performance and the band alignment of CZTS/CdS thin film solar cell[J]. Solar Energy, 2020, 201: 219-226. [35] NITSCHE R, BÖLSTERLI H U, LICHTENSTEIGER M. Crystal growth by chemical transport reactions—I[J]. Journal of Physics and Chemistry of Solids, 1961, 21(3/4): 199-205. [36] NITSCHE R, SARGENT D F, WILD P. Crystal growth of quaternary 122464 chalcogenides by iodine vapor transport[J]. Journal of Crystal Growth, 1967, 1(1): 52-53. [37] LEVCENKO S, TEZLEVAN V E, ARUSHANOV E, et al. Free-to-bound recombination in near stoichiometric Cu2ZnSnS4 single crystals[J]. Physical Review B, 2012, 86(4): 045206. [38] COLOMBARA D, DELSANTE S, BORZONE G, et al. Crystal growth of Cu2ZnSnS4 solar cell absorber by chemical vapor transport with I2[J]. Journal of Crystal Growth, 2013, 364: 101-110. [39] BOISTELLE R, ASTIER J P. Crystallization mechanisms in solution[J]. Journal of Crystal Growth, 1988, 90(1/2/3): 14-30. [40] MELLIKOV E, MEISSNER D, ALTOSAAR M, et al. CZTS monograin powders and thin films[J]. Advanced Materials Research, 2011, 222: 8-13. [41] MELLIKOV E, ALTOSAAR M, RAUDOJA J, et al. Cu2(ZnxSn2-x)(SySe1-y)4 monograin materials for photovoltaics[J]. Materials Challenges in Alternative and Renewable: Ceramic Transactions, 2010, 224:137-141. [42] ZHANG J, LIAO J, SHAO L X, et al. Effect of Fe content on Cu2FexZn1-xSnS4 single crystals fabricated by flux growth method[J]. Journal of Physics D: Applied Physics, 2018, 51(29): 295107. [43] TIMMO K, ALTOSAAR M, RAUDOJA J, et al. Sulfur-containing Cu2ZnSnSe4 monograin powders for solar cells[J]. Solar Energy Materials and Solar Cells, 2010, 94(11): 1889-1892. [44] TIMMO K, ALTOSAAR M, RAUDOJA J, et al. Chemical etching of Cu2ZnSn(S, Se)4 monograin powder[C]//2010 35th IEEE Photovoltaic Specialists Conference. June 20-25, 2010, Honolulu, HI, USA. IEEE, 2010: 1982-1985. [45] BÄR M, SCHUBERT B A, MARSEN B, et al. Impact of KCN etching on the chemical and electronic surface structure of Cu2ZnSnS4 thin-film solar cell absorbers[J]. Applied Physics Letters, 2011, 99(15): 152111. [46] BUFFIÈRE M, BRAMMERTZ G, SAHAYARAJ S, et al. KCN chemical etch for interface engineering in Cu2ZnSnSe4 solar cells[J]. ACS Applied Materials & Interfaces, 2015, 7(27): 14690-14698. [47] DURANT B K, PARKINSON B. Photovoltaic response of natural Kesterite crystals[J]. Solar Energy Materials and Solar Cells, 2016, 144: 586-591. [48] COLLORD A D, XIN H, HILLHOUSE H W. Combinatorial exploration of the effects of intrinsic and extrinsic defects in Cu2ZnSn(S, Se)4[J]. IEEE Journal of Photovoltaics, 2015, 5(1): 288-298. [49] LEVANYUK A P, OSIPOV V V. Edge luminescence of direct-gap semiconductors[J]. Uspekhi Fizicheskih Nauk, 1981, 133(3): 427. [50] TANAKA K, MIYAMOTO Y, UCHIKI H, et al. Donor-acceptor pair recombination luminescence from Cu2ZnSnS4 bulk single crystals[J]. Physica Status Solidi (a), 2006, 203(11): 2891-2896. [51] HÖNES K, ZSCHERPEL E, SCRAGG J, et al. Shallow defects in Cu2ZnSnS4[J]. Physica B: Condensed Matter, 2009, 404(23/24): 4949-4952. [52] SCHORR S, HOEBLER H J, TOVAR M. A neutron diffraction study of the stannite-kesterite solid solution series[J]. European Journal of Mineralogy, 2007, 19(1): 65-73. [53] GROSSBERG M, KRUSTOK J, RAADIK T, et al. Photoluminescence study of disordering in the cation sublattice of Cu2ZnSnS4[J]. Current Applied Physics, 2014, 14(11): 1424-1427. [54] KASK E, GROSSBERG M, JOSEPSON R, et al. Defect studies in Cu2ZnSnSe4 and Cu2ZnSn(Se0.75S0.25)4 by admittance and photoluminescence spectroscopy[J]. Materials Science in Semiconductor Processing, 2013, 16(3): 992-996. [55] CHEN S Y, GONG X G, WALSH A, et al. Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4[J]. Applied Physics Letters, 2010, 96(2): 021902. [56] ZHU X P, ZHANG J, LIAO J, et al. Transformation of carrier recombination mechanism as increasing the Germanium content in Cu2ZnGexSn1-xS4 single crystal prepared by molten salt method[J]. Optical Materials, 2023, 139: 113744. [57] RAVINDIRAN M, PRAVEENKUMAR C. Status review and the future prospects of CZTS based solar cell——a novel approach on the device structure and material modeling for CZTS based photovoltaic device[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 317-329. [58] MA S Y, MA C H, LU X S, et al. Optical characterization of bandedge electronic structure and defect states in Cu2ZnSnS4[J]. Journal of Infrared and Millimeter Waves, 2020, 39: 92-98. [59] CHEN D G, RAVINDRA N M. Electronic and optical properties of Cu2ZnGeX4 (X=S, Se and Te) quaternary semiconductors[J]. Journal of Alloys and Compounds, 2013, 579: 468-472. [60] DUAN H S, YANG W B, BOB B, et al. The role of sulfur in solution-processed Cu2ZnSn(S, Se)4 and its effect on defect properties[J]. Advanced Functional Materials, 2013, 23(11): 1466-1471. [61] PATIL S J, BULAKHE R N, LOKHANDE C D. Liquefied petroleum gas (LPG) sensing using spray deposited Cu2ZnSnS4 thin film[J]. Journal of Analytical and Applied Pyrolysis, 2016, 117: 310-316. [62] 张 军, 廖 峻, 薛书文, 等. 一种单晶颗粒薄膜及其气体传感器的制备方法: CN110026325B. 2022-04-26. ZHANG J, LIAO J, XUE S W, et al. A preparation method for single crystal particle thin film and its gas sensor: CN110026325B. 2022-04-26 (in Chinese). [63] SURYAWANSHI M, SHIN S W, GHORPADE U, et al. A facile and green synthesis of colloidal Cu2ZnSnS4 nanocrystals and their application in highly efficient solar water splitting[J]. Journal of Materials Chemistry A, 2017, 5(9): 4695-4709. [64] NAUTIYAL H, LOHANI K, MUKHERJEE B, et al. Mechanochemical synthesis of sustainable ternary and quaternary nanostructured Cu2SnS3, Cu2ZnSnS4, and Cu2ZnSnSe4 chalcogenides for thermoelectric applications[J]. Nanomaterials, 2023, 13(2): 366. [65] MAEDA T, KAWABATA A, WADA T. First-principles study on alkali-metal effect of Li, Na, and K in Cu2 ZnSnS4 and Cu2 ZnSnSe4[J]. Physica Status Solidi C, 2015, 12(6): 631-637. |
[1] | WU Cheng, ZHU Zhaojie, LI Jianfu, TU Chaoyang, LYU Peiwen, WANG Yan. Fabrication of h-BN Films by Reactive Sputtering Method for Solar-Blind Ultraviolet Detectors [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(5): 798-804. |
[2] | GENG Fangjuan, YANG Lei, ZHU Jiaqi. Effect of Annealing Method and Temperature on Structure, Morphology and Photoelectric Properties of CuI Thin Films by Layer by Layer Iodization [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(5): 842-848. |
[3] | CAO Sheng, ZHANG Feng, LIU Shaoxiang, CHEN Sikai, ZHAO Yang, SHI Xuan, ZHAO Hongquan. Preparation and Photoelectric Properties of Er-Doped WS2 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(5): 849-856. |
[4] | WANG Benfa, WANG Shouzhi, WANG Guodong, YU Jiaoxian, LIU Lei, LI Qiubo, WU Yuzhu, XU Xiangang, ZHANG Lei. Research Progress on the Growth of GaN Single Crystal by Sodium Flux Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(2): 183-195. |
[5] | LAN Boyang, QI Wanxin, LI Dong, HAN Fenglan. Photoelectric Properties of Bi2S3/MIL-125(Ti) Composites with n-n Heterostructure [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(1): 139-148. |
[6] | ZHANG Yutong, ZHU Mengqi, WANG Biao, JIA Xinhui, LI Jing, WANG Jiyang. Research Progress of Huntite Family Nonlinear Optical Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(9-10): 1608-1625. |
[7] | YIN Jiaqi, YU Chunyan, ZHAI Guangmei, LI Tianbao, ZHANG Zhuxia. Effect of Indium and Gallium Co-Doping on Growth Behavior and Photoelectric Properties of n-ZnO Nanorods/p-GaN Heterojunction [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(6): 1012-1019. |
[8] | XIAO Jianmin, YUAN Jiren, WANG Peng, DENG Xinhua, HUANG Haibin, ZHOU Lang. Simulation of Lead-Based Halide Perovskite Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(6): 1051-1058. |
[9] | NING Turong, ZHOU Jiaxin, LING Shiwu, SU Kunren, CHEN Xingyuan, XU Xiangfu, WANG Guo, LIN Erqing, HAN Taikun, QI Lingmin, LAI Guoxia. First-Principles Calculations of Photoelectric Properties of the Theoretically Designed ZnTiS3 Compound [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(2): 282-288. |
[10] | DING Xiaonan, TIAN Xiangxin, ZHAO Peng, GAO Zeliang, LIU Jingquan. Growth and Property of Aurivillius Structure Bi2MoxW1-xO6 Series Ferroelectric Functional Single Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(11): 1858-1870. |
[11] | ZHANG Lifan, JIA Wei, DONG Hailiang, LI Tianbao, JIA Zhigang, XU Bingshe. Growth and Luminescence Properties of InGaN/GaN Micro-Array [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(4): 776-782. |
[12] | ZHAO Hanghang, YUAN Jiren, DENG Xinhua, HUANG Haibin. Simulation of MoS2/SnS Heterojunction Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(3): 477-483. |
[13] | ZHANG Haifeng, WANG Bin, CHENG Caiping, YI Sijing. First-Principles Study on the Effects of Ag Doping and Defect Coexistence on the Photocatalytic Properties of ZnO [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(11): 2027-2035. |
[14] | SU Kunren, LIANG Yiji, LIN Erqing, WANG Guo, XU Xiangfu, CHEN Xingyuan, LAI Guoxia. First-Principles Study on the Magnetic and Photoelectric Properties of Mn-Doped ZnTiO3 with LiNbO3 Strcture [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(1): 38-42. |
[15] | WANG Yi, DING Zhao, WEI Jiemin, YANG Chen, LUO Zijiang, WANG Jihong, GUO Xiang. Nucleation and Diffusion of In Atom on GaAs(001) Surface [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(12): 2268-2273. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||