[1] BOCKOWSKI M, IWINSKA M, AMILUSIK M, et al. Challenges and future perspectives in HVPE-GaN growth on ammonothermal GaN seeds[J]. Semiconductor Science and Technology, 2016, 31(9): 093002. [2] FUJITA S. Wide-bandgap semiconductor materials: for their full bloom[J]. Japanese Journal of Applied Physics, 2015, 54: 030101. [3] AMANO H. Progress and prospect of the growth of wide-band-gap group Ⅲ nitrides: development of the growth method for single-crystal bulk GaN[J]. Japanese Journal of Applied Physics, 2013, 52(5R): 050001. [4] WELLMANN P. Review of SiC crystal growth technology[J]. Semiconductor Science and Technology, 2018, 33: 103001. [5] FLACK T J, PUSHPAKARAN B N, BAYNE S B. GaN technology for power electronic applications: a review[J]. Journal of Electronic Materials, 2016, 45(6): 2673-2682. [6] KIM M, SEO J H, SINGISETTI U, et al. Recent advances in free-standing single crystalline wide band-gap semiconductors and their applications: GaN, SiC, ZnO, β-Ga2O3, and diamond[J]. Journal of Materials Chemistry C, 2017, 5(33): 8338-8354. [7] LI J, NAM K B, NAKARMI M L, et al. Band structure and fundamental optical transitions in wurtzite AlN[J]. Applied Physics Letters, 2003, 83(25): 5163-5165. [8] YAMASHITA H, FUKUI K, MISAWA S, et al. Optical properties of AlN epitaxial thin films in the vacuum ultraviolet region[J]. Journal of Applied Physics, 1979, 50(2): 896-898. [9] GRANDUSKY J R, ZHONG Z B, CHEN J, et al. Manufacturability of high power ultraviolet-C light emitting diodes on bulk aluminum nitride substrates[J]. Solid-State Electronics, 2012, 78: 127-130. [10] LI J, FAN Z Y, DAHAL R, et al. 200 nm deep ultraviolet photodetectors based on AlN[J]. Applied Physics Letters, 2006, 89(21): 213510. [11] HERRO Z G, ZHUANG D, SCHLESSER R, et al. Seeded growth of AlN on N- and Al-polar AlN seeds by physical vapor transport[J]. Journal of Crystal Growth, 2006, 286(2): 205-208. [12] LIU G, ZHOU G G, QIN Z Y, et al. Luminescence characterizations of freestanding bulk single crystalline aluminum nitride towards optoelectronic application[J]. CrystEngComm, 2017, 19(37): 5522-5527. [13] TANIYASU Y, KASU M, MAKIMOTO T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres[J]. Nature, 2006, 441(7091): 325-328. [14] CALIENDO C, D'AMICO A, LO CASTRO F. Lamb waves propagation along 3C-SiC/AlN membranes for application in temperature-compensated, high-sensitivity gravimetric sensors[J]. Sensors, 2013, 13(1): 550-564. [15] VILHUNEN S, SÄRKKÄ H, SILLANPÄÄ M. Ultraviolet light-emitting diodes in water disinfection[J]. Environmental Science and Pollution Research, 2009, 16(4): 439-442. [16] XU Z Y, SADLER B M. Ultraviolet communications: potential and state-of-the-art[J]. IEEE Communications Magazine, 2008, 46(5): 67-73. [17] KATAGIRI Y, KISHINO S, OKUURA K, et al. Low-pressure HVPE growth of crack-free thick AlN on a trench-patterned AlN template[J]. Journal of Crystal Growth, 2009, 311(10): 2831-2833. [18] FREITAS J A. Properties of the state of the art of bulk Ⅲ-Ⅴ nitride substrates and homoepitaxial layers[J]. Journal of Physics D. Applied Physics, 2010, 43: 073001. [19] YU R X, LIU G X, WANG G D, et al. Ultrawide-bandgap semiconductor AlN crystals: growth and applications[J]. Journal of Materials Chemistry C, 2021, 9(6): 1852-1873. [20] RADHAKRISHNAN SUMATHI R. Native seeding and silicon doping in bulk growth of AlN single crystals by PVT method[J]. Physica Status Solidi C, 2014, 11(3/4): 545-548. [21] EPELBAUM B M, BICKERMANN M, NAGATA S, et al. Similarities and differences in sublimation growth of SiC and AlN[J]. Journal of Crystal Growth, 2007, 305(2): 317-325. [22] 哈尔滨科友半导体产业装备与技术研究院有限公司. 一种氮化铝晶体生长用多孔氮化铝原料的制备方法: CN113044816B[P]. 2022-11-29. Harbin Keyou Semiconductor Industry Equipment and Technology Research Institute Co., Ltd. A preparation method of porous aluminum nitride raw material for the growth of aluminum nitride crystals: CN113044816B[P]. 2022-11-29 (in Chinese). [23] 北京华进创威电子有限公司. 一种气相法生长氮化铝晶体用原料的制备方法: CN103643295A[P]. 2014-03-19. Beijing Huajin Chuangwei Electronics Co., Ltd. A preparation method of raw materials for gas-phase growth of aluminum nitride crystals: CN103643295A[P]. 2014-03-19 (in Chinese). [24] 山东大学. 一种生长氮化铝单晶用可控粒径氮化铝原料的制备方法: CN115012027A[P]. 2022-09-06. Shandong University. A preparation method of controllable particle size aluminum nitride raw material for growing aluminum nitride single crystals: CN115012027A[P]. 2022-09-06 (in Chinese). [25] WU B, ZHANG H. Transport phenomena in an aluminum nitride induction heating sublimation growth system[J]. International Journal of Heat and Mass Transfer, 2004, 47(14/15/16): 2989-3001. |