[1] BIJALWAN V, TOFEL P, SPOTZ Z, et al. Processing of 0.55(Ba0.9Ca0.1)TiO3-0.45Ba(Sn0.2Ti0.8)O3 lead-free ceramics with high piezoelectricity[J]. Journal of the American Ceramic Society, 2020, 103(8): 4611-4624. [2] WU H, ZHANG Y, WU J, et al. Microstructural origins of high piezoelectric performance: a pathway to practical lead-free materials[J]. Advanced Functional Materials, 2019, 29(33): 1902911. [3] ZHANG L, WANG H Y, WANG D, et al. A new strategy for large dynamic piezoelectric responses in lead-free ferroelectrics: the relaxor/morphotropic phase boundary crossover[J]. Advanced Functional Materials, 2020, 30(45): 2004641. [4] 吉 祥, 王传彬, 李诵斌, 等. 煅烧温度对溶胶-凝胶合成BCZT纳米粉体的影响[J]. 人工晶体学报, 2017, 46(11): 2178-2182+2189. JI X, WANG C B, LI S B, et al. Effect of calcination temperature on BCZT nano-powder synthesized via sol-gel method[J]. Journal of Synthetic Crystals, 2017, 46(11): 2178-2182+2189 (in Chinese). [5] BARASKAR B G, KOLEKAR Y D, THOMBARE B R, et al. Enhanced piezoelectric, ferroelectric, and electrostrictive properties of lead-free (1-x)BCZT-(x)BCST electroceramics with energy harvesting capability[J]. Small, 2023: 2300549. [6] LIU W F, REN X B. Large piezoelectric effect in Pb-free ceramics[J]. Physical Review Letters, 2009, 103(25): 257602. [7] KAARTHIK J, KAUSHIGA C, SRADHA G, et al. Improvement of energy storage density and energy harvesting performance of amphoteric Pr ion-modified lead-free Ba0.85Ca0.15Ti0.9Zr0.1O3 (BCZT) ceramics[J]. Journal of Alloys and Compounds, 2023, 943: 169069. [8] MERSELMIZ S, HANANI Z, PRAH U, et al. Design of lead-free BCZT-based ceramics with enhanced piezoelectric energy harvesting performances[J]. Physical Chemistry Chemical Physics, 2022, 24(10): 6026-6036. [9] MARAJ M, WEI W W, PENG B L, et al. Dielectric and energy storage properties of Ba(1-x)CaxZryTi(1-y)O3 (BCZT): a review[J]. Materials, 2019, 12(21): 3641. [10] LIU S Y, ZHANG Z M, SHAN Y, et al. A flexible and lead-free BCZT thin film nanogenerator for biocompatible energy harvesting[J]. Materials Chemistry Frontiers, 2021, 5(12): 4682-4689. [11] BHARDWAJ C, DANIEL B S S, KAUR D. Pulsed laser deposition and characterization of highly tunable (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 thin films grown on LaNiO3/Si substrate[J]. Journal of Physics and Chemistry of Solids, 2013, 74(1): 94-100. [12] JI X, WANG C B, HARUMOTO T, et al. Deposition-temperature dependence of structure, ferroelectric property and conduction mechanism of BCZT epitaxial films[J]. Ceramics International, 2021, 47(3): 3195-3200. [13] WANG T H, HSU P C B, KORYTOV M, et al. Polarization control of epitaxial Barium titanate (BaTiO3) grown by pulsed-laser deposition on a MBE-SrTiO3/Si(001) pseudo-substrate[J]. Journal of Applied Physics, 2020, 128(10): 104104. [14] LUCKE P, BAYRAKTAR M, BIRKHÖLZER Y A, et al. Hysteresis, loss and nonlinearity in epitaxial PbZr0.55Ti0.45O3 films: a polarization rotation model[J]. Advanced Functional Materials, 2020, 30(52): 2005397. [15] HYUCK JANG J, KIM Y M, HE Q A, et al. Studying dynamics of oxygen vacancy ordering in epitaxial LaCoO3/SrTiO3 superlattice with real-time observation[J]. Microscopy and Microanalysis, 2014, 20(S3): 422-423. [16] 吴 健, 许立立, 杨 森. 热处理对脉冲激光沉积羟基磷灰石薄膜组织和性能的影响[J]. 中国激光, 2012, 39(5): 183-187. WU J, XU L L, YANG S. Influence of heat treatment on the microstructure and properties of pulsed laser deposited hydroxyapatite thin films[J]. Chinese Journal of Lasers, 2012, 39(5): 183-187 (in Chinese). [17] PIORRA A, HRKAC V, WOLFF N, et al. (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 thin films prepared by PLD: relaxor properties and complex microstructure[J]. Journal of Applied Physics, 2019, 125(24): 244103. [18] LIU G Z, WEI J, ZHAO R, et al. Growth, microstructure and transport properties of ultrathin epitaxial La0.5Ca0.5MnO3 films prepared by laser molecular beam epitaxy[J]. Vacuum, 2018, 148: 117-123. [19] 樊 堃, 虞 澜, 秦 梦, 等. c轴倾斜CuCr1-xMgxO2(x=0, 0.02)薄膜的外延生长[J]. 人工晶体学报, 2016, 45(4): 1000-1005+1011. FAN K, YU L, QIN M, et al. Epitaxial growth of CuCr1-xMgxO2(x=0, 0.02) thin films on c-axis tilted substrates[J]. Journal of Synthetic Crystals, 2016, 45(4): 1000-1005+1011 (in Chinese). [20] ESTANDÍA S, DIX N, GAZQUEZ J, et al. Engineering ferroelectric Hf0.5Zr0.5O2 thin films by epitaxial stress[J]. ACS Applied Electronic Materials, 2019, 1(8): 1449-1457. [21] CHANDRASENA R U, YANG W B, LEI Q Y, et al. Strain-engineered oxygen vacancies in CaMnO3 thin films[J]. Nano Letters, 2017, 17(2): 794-799. [22] ZHOU J A, JING X S, ALEXE M, et al. Microstructure defects mediated charge transport in Nb-doped epitaxial BaTiO3 thin films[J]. Journal of Physics D: Applied Physics, 2016, 49(17): 175302. [23] TIAN Y S, CAO L J, QIN P P, et al. Piezoelectric and thermophysical performances of La3+ and Ir4+ co-doped Ba0.95Ca0.05Ti0.94Zr0.06O3 ceramics[J]. Ceramics International, 2019, 45(10): 12825-12831. [24] LIU Y, WANG Z, THIND A S, et al. Epitaxial growth and dielectric characterization of atomically smooth 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 thin films[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2019, 37(1): 011502. [25] YANG S J, ZHANG F Q, XIE X B, et al. Effects of transition metal (Cu, Zn, Mn) doped on leakage current and ferroelectric properties of BiFeO3 thin films[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(20): 14944-14948. [26] CHIU F C. A review on conduction mechanisms in dielectric films[J]. Advances in Materials Science and Engineering, 2014: 1-18. [27] GENG W P, QIAO X J, ZHAO C Q, et al. Temperature dependence of ferroelectric property and leakage mechanism in Mn-doped Pb(Zr0.3Ti0.7)O3 films[J]. Ceramics International, 2021, 47(17): 24047-24052. [28] SILVA J P B, WANG J, KOSTER G, et al. Hysteretic characteristics of pulsed laser deposited 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3/ZnO bilayers[J]. ACS Applied Materials & Interfaces, 2018, 10(17): 15240-15249. [29] YANG S J, ZHANG F Q, XIE X B, et al. Enhanced leakage and ferroelectric properties of Zn-doped BiFeO3 thin films grown by sol-gel method[J]. Journal of Alloys and Compounds, 2018, 734: 243-249. [30] BAO L J, RYLEY J, LI Z G, et al. Conduction mechanism of sputtered BaTiO3 film on Ni substrate[J]. Journal of Applied Physics, 2009, 106(11): 114114. [31] GUO M Y, TAN G Q, YANG W, et al. Multiferroic properties of Bi0.89Ho0.08Sr0.03Fe0.97-xMn0.03NixO3 thin films modulated by F-N tunneling effects[J]. Ceramics International, 2018, 44(11): 12282-12291. [32] LIM E, ISMAIL R. Conduction mechanism of valence change resistive switching memory: a survey[J]. Electronics, 2015, 4(3): 586-613. |