[1] 徐 慢, 夏冬林, 赵修建. 透明导电氧化物薄膜材料及其制备技术研究进展[J]. 材料导报, 2006, 20(增刊2): 312-314+322. XU M, XIA D L, ZHAO X J. Progress in transparent conductive oxide films and preparation technology[J]. Materials Review, 2006, 20(supplement 2): 312-314+322 (in Chinese). [2] 沈 艳, 刘丹丹, 宋世金, 等. 透明导电CuCr1-xMgxO2(x=0~0.08)薄膜的固溶度扩展和c轴外延生长[J]. 材料导报, 2021, 35(10): 10008-10012. SHEN Y, LIU D D, SONG S J, et al. Solid solubility extension and c-axis epitaxial growth of transparent conductive CuCr1-xMgxO2(x=0-0.08) thin films[J]. Materials Reports, 2021, 35(10): 10008-10012 (in Chinese). [3] 刘文婷, 张 赟, 吴漫漫, 等. Cu基铜铁矿结构透明导电氧化物薄膜的研究进展[J]. 材料导报, 2014, 28(3): 28-32. LIU W T, ZHANG Y, WU M M, et al. Research progress of Cu-based transparent conductive oxide thin films with delafossite structure[J]. Materials Review, 2014, 28(3): 28-32 (in Chinese). [4] HECHT D S, HEINTZ A M, LEE R, et al. High conductivity transparent carbon nanotube films deposited from superacid[J]. Nanotechnology, 2011, 22(16): 169501. [5] JIANG X, WONG F L, FUNG M K, et al. Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices[J]. Applied Physics Letters, 2003, 83(9): 1875-1877. [6] SHE G W, ZHANG X H, SHI W S, et al. Controlled synthesis of oriented single-crystal ZnO nanotube arrays on transparent conductive substrates[J]. Applied Physics Letters, 2008, 92(5): 53111. [7] MINAMI T. New n-type transparent conducting oxides[J]. MRS Bulletin, 2000, 25(8): 38-44. [8] MIZOGUCHI H, KAMIYA T, MATSUISHI S, et al. A germanate transparent conductive oxide[J]. Nature Communications, 2011, 2: 470. [9] NAGARAJAN R, DUAN N, JAYARAJ M K, et al. p-type conductivity in the delafossite structure[J]. International Journal of Inorganic Materials, 2001, 3(3): 265-270. [10] MONTEIRO J F H L, MONTEIRO F C, JURELO A R, et al. Conductivity in (Ag, Mg)-doped delafossite oxide CuCrO2[J]. Ceramics International, 2018, 44(12): 14101-14107. [11] POIENAR M, HARDY V, KUNDYS B, et al. Revisiting the properties of delafossite CuCrO2: a single crystal study[J]. Journal of Solid State Chemistry, 2012, 185: 56-61. [12] TANG Y Y, QIN M, HU Y D, et al. Solid solubility of Mg and enhanced electrical conduction in the C-axis orientation of CuCr1-xMgxO2 polycrystals[J]. Journal of Asian Ceramic Societies, 2020, 8(2): 537-541. [13] TSAY C Y, CHEN C L. Improved electrical properties of p-type CuGaO2 semiconductor thin films through Mg and Zn doping[J]. Ceramics International, 2017, 43(2): 2563-2567. [14] KAWAZOE H, YASUKAWA M, HYODO H, et al. p-type electrical conduction in transparent thin films of CuAlO2[J]. Nature, 1997, 389(6654): 939-942. [15] HU Y D, LI Y, WU H R, et al. Laser-induced transverse voltage effect in c-axis inclined CuCr0.98Mg0.02O2 thin films with dominant phonon thermal conductivity[J]. Journal of Applied Physics, 2021, 130(14): 143104. [16] ONO Y, SATOH K I, NOZAKI T, et al. Structural, magnetic and thermoelectric properties of delafossite-type oxide, CuCr1-xMgxO2(0≤x≤0.05)[J]. Japanese Journal of Applied Physics, 2007, 46(3A): 1071-1075. [17] 胡 冰, 揣雅惠, 付 洋, 等. Ca掺杂对CuCrO2薄膜形成和电学特性的影响[J]. 光子学报, 2014, 43(12): 33-36. HU B, CHUAI Y H, FU Y, et al. Effect of Ca-doping on the formation and electrical property of CuCrO2 films[J]. Acta Photonica Sinica, 2014, 43(12): 33-36 (in Chinese). [18] TRIPATHI T S, KARPPINEN M. Enhanced p-type transparent semiconducting characteristics for ALD-grown Mg-substituted CuCrO2 thin films[J]. Advanced Electronic Materials, 2017, 3(6): 1600341. [19] MAIGNAN A, MARTIN C, FRÉSARD R, et al. On the strong impact of doping in the triangular antiferromagnet CuCrO2[J]. Solid State Communications, 2009, 149(23/24): 962-967. [20] LIN S S, SHI Q A, DAI M J, et al. The optoelectronic properties of p-type Cr-deficient Cu[Cr0.95-xMg0.05]O2 films deposited by reactive magnetron sputtering[J]. Materials, 2020, 13(10): 2376. [21] 崔 凯, 虞 澜, 刘安安, 等. 具有c轴择优的CuCr1-xMgxO2多晶的热电输运性质及Mg掺杂效应[J]. 材料导报, 2019, 33(20): 3363-3366+3371. CUI K, YU L, LIU A A, et al. Thermoelectric transport properties and Mg doping effect of CuCr1-xMgxO2 polycrystals with c-axis orientation[J]. Materials Reports, 2019, 33(20): 3363-3366+3371 (in Chinese). |