JOURNAL OF SYNTHETIC CRYSTALS ›› 2024, Vol. 53 ›› Issue (4): 554-571.
• Reviews • Previous Articles Next Articles
QIN Feng1,2, WU Jinjie2, DENG Ningqin2, JIAO Zhiwei1, ZHU Weifeng2,3, TANG Xianqiang2,3, ZHAO Rui2
Received:
2023-10-26
Online:
2024-04-15
Published:
2024-04-19
CLC Number:
QIN Feng, WU Jinjie, DENG Ningqin, JIAO Zhiwei, ZHU Weifeng, TANG Xianqiang, ZHAO Rui. Research Progress for Lead Halide Perovskite Direct Radiation Detector Based on the Solution Method[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 554-571.
[1] CHAPMAN D, THOMLINSON W, JOHNSTON R E, et al. Diffraction enhanced X-ray imaging[J]. Physics in Medicine and Biology, 1997, 42(11): 2015-2025. [2] GILL H S, ELSHAHAT B, KOKIL A, et al. Flexible perovskite based X-ray detectors for dose monitoring in medical imaging applications[J]. Physics in Medicine, 2018, 5: 20-23. [3] FEIGIN L A, SVERGUN D I. Structure analysis by small-angle X-ray and neutron scattering[M]. Boston, MA: Springer US, 1987. [4] SPAHN M. X-ray detectors in medical imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 731: 57-63. [5] SZELES C. CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications[J]. Physica Status Solidi (b), 2004, 241(3): 783-790. [6] SORDO S D, ABBENE L, CAROLI E, et al. Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications[J]. Sensors, 2009, 9(5): 3491-3526. [7] HE Z, LI W, KNOLL G F, et al. Measurement of material uniformity using 3-D position sensitive CdZnTe gamma-ray spectrometers[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 441(3): 459-467. [8] BYUN J I, HWANG H Y, YUN J Y. A low background gamma-ray spectrometer with a large well HPGe detector[J]. Applied Radiation and Isotopes, 2020, 156: 108932. [9] LUKE P N, AMMAN M, TINDALL C, et al. Recent developments in semiconductor gamma-ray detectors[J]. Journal of Radioanalytical and Nuclear Chemistry, 2005, 264(1): 145-153. [10] KASAP S O. X-ray sensitivity of photoconductors: application to stabilized a-Se[J]. Journal of Physics D: Applied Physics, 2000, 33(21): 2853-2865. [11] SIDDIQUEE S, KABIR M Z. Modeling of photocurrent and lag signals in amorphous selenium X-ray detectors[J]. Journal of Vacuum Science Technology A: Vacuum Surfaces and Films, 2015, 33(4): 041514. [12] LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107): 643-647. [13] KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports, 2012, 2: 591. [14] HEO J H, IM S H, NOH J H, et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors[J]. Nature Photonics, 2013, 7: 486-491. [15] LIU M Z, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501: 395-398. [16] WANG Q, DONG Q F, LI T, et al. Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells[J]. Advanced Materials, 2016, 28(31): 6734-6739. [17] TAN Z K, MOGHADDAM R S, LAI M L, et al. Bright light-emitting diodes based on organometal halide perovskite[J]. Nature Nanotechnology, 2014, 9: 687-692. [18] CHO H, JEONG S H, PARK M H, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes[J]. Science, 2015, 350(6265): 1222-1225. [19] YANG F, ZENG Q S, DONG W, et al. Rational adjustment to interfacial interaction with carbonized polymer dots enabling efficient large-area perovskite light-emitting diodes[J]. Light: Science & Applications, 2023, 12: 119. [20] FANG Y J, DONG Q F, SHAO Y C, et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination[J]. Nature Photonics, 2015, 9: 679-686. [21] CHEN C H, LI Z Y, FU L. Perovskite photodetector-based single pixel color camera for artificial vision[J]. Light: Science & Applications, 2023, 12: 77. [22] XUE J, ZHU Z F, XU X B, et al. Narrowband perovskite photodetector-based image array for potential application in artificial vision[J]. Nano Letters, 2018, 18(12): 7628-7634. [23] STOUMPOS C C, KANATZIDIS M G. Halide perovskites: poor man's high-performance semiconductors[J]. Advanced Materials, 2016, 28(28): 5778-5793. [24] WU Y, FENG J S, YANG Z, et al. Halide perovskite: a promising candidate for next-generation X-ray detectors[J]. Advanced Science, 2022, 10(1): e2205536. [25] ZHOU Y, CHEN J, BAKR O M, et al. Metal halide perovskites for X-ray imaging scintillators and detectors[J]. ACS Energy Letters, 2021, 6(2): 739-768. [26] NAZARENKO O, YAKUNIN S, MORAD V, et al. Single crystals of caesium formamidinium lead halide perovskites: solution growth and gamma dosimetry[J]. NPG Asia Materials, 2017, 9(4): e373. [27] DONG Q F, FANG Y J, SHAO Y C, et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 2015, 347(6225): 967-970. [28] LIAN Z P, YAN Q F, GAO T T, et al. Perovskite CH3NH3PbI3(Cl) single crystals: rapid solution growth, unparalleled crystalline quality, and low trap density toward 108 cm-3[J]. Journal of the American Chemical Society, 2016, 138(30): 9409-9412. [29] YIN W J, SHI T T, YAN Y F. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber[J]. Applied Physics Letters, 2014, 104(6): 063903. [30] LUKOSI E, SMITH T, TISDALE J, et al. Methylammonium lead tribromide semiconductors: ionizing radiation detection and electronic properties[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 927: 401-406. [31] YAKUNIN S, SYTNYK M, KRIEGNER D, et al. Detection of X-ray photons by solution-processed lead halide perovskites[J]. Nature Photonics, 2015, 9: 444-449. [32] SAIDAMINOV M I, ABDELHADY A L, MURALI B, et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization[J]. Nature Communications, 2015, 6: 7586. [33] LIU Y, ZHENG X P, FANG Y J, et al. Ligand assisted growth of perovskite single crystals with low defect density[J]. Nature Communications, 2021, 12: 1686. [34] SONG J M, FENG X P, LI H Y, et al. Facile strategy for facet competition management to improve the performance of perovskite single-crystal X-ray detectors[J]. The Journal of Physical Chemistry Letters, 2020, 11(9): 3529-3535. [35] SONG Y L, WANG L X, SHI Y Q, et al. Detector-grade perovskite single-crystal wafers via stress-free gel-confined solution growth targeting high-resolution ionizing radiation detection[J]. Light: Science & Applications, 2023, 12: 85. [36] WEI H T, DESANTIS D, WEI W, et al. Dopant compensation in alloyed CH3NH3PbBr3-xClx perovskite single crystals for gamma-ray spectroscopy[J]. Nature Materials, 2017, 16: 826-833. [37] WANG X, WU Y, LI G W, et al. Ultrafast ionizing radiation detection by p-n junctions made with single crystals of solution-processed perovskite[J]. Advanced Electronic Materials, 2018, 4(11): 1800237. [38] BASIRICÒ L, CIAVATTI A, FRABONI B. Solution-grown organic and perovskite X-ray detectors: a new paradigm for the direct detection of ionizing radiation[J]. Advanced Materials Technologies, 2021, 6(1): 2000475. [39] 介万奇. Bridgman法晶体生长技术的研究进展[J]. 人工晶体学报, 2012, 41(S1): 24-35. JIE W Q. Research progress of Bridgman crystal growth technology[J]. Journal of Synthetic Crystals, 2012, 41(S1): 24-35 (in Chinese). [40] 覃皓明, 申南南, 何亦辉. 熔体法制备无机钙钛矿半导体核辐射探测晶体与器件的研究进展[J]. 人工晶体学报, 2021, 50(10): 1830-1843. QIN H M, SHEN N N, HE Y H. Research progress on the melt-grown inorganic perovskite semiconductor single crystals and devices for nuclear radiation detection[J]. Journal of Synthetic Crystals, 2021, 50(10): 1830-1843 (in Chinese). [41] LIU J, SHAO W Y, XU Q, et al. Subnanosecond X(γ)-ray sensor based on CH3NH3PbCl3 perovskite single crystals[J]. IEEE Photonics Technology Letters, 2020, 32(11): 635-638. [42] CHURILOV A V, CIAMPI G, KIM H, et al. Thallium bromide nuclear radiation detector development[J]. IEEE Transactions on Nuclear Science, 2009, 56(4): 1875-1881. [43] YUAN W N, NIU G D, XIAN Y M, et al. In situ regulating the order-disorder phase transition in Cs2AgBiBr6 single crystal toward the application in an X-ray detector[J]. Advanced Functional Materials, 2019, 29(20): 1900234. [44] SONG X, CUI Q Y, LIU Y C, et al. Metal-free halide perovskite single crystals with very long charge lifetimes for efficient X-ray imaging[J]. Advanced Materials, 2020, 32(42): e2003353. [45] LIU Y C, YANG Z, CUI D, et al. Two-inch-sized perovskite CH3NH3PbX3 (X=Cl, Br, I) crystals: growth and characterization[J]. Advanced Materials, 2015, 27(35): 5176-5183. [46] SHI D, ADINOLFI V, COMIN R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 2015, 347(6221): 519-522. [47] WEI H T, FANG Y J, MULLIGAN P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals[J]. Nature Photonics, 2016, 10: 333-339. [48] BAHTIAR A, RAHMANITA S, INAYATIE Y D. Pin-hole free perovskite film for solar cells application prepared by controlled two-step spin-coating method[J]. IOP Conference Series: Materials Science and Engineering, 2017, 196: 012037. [49] HE M, LI B, CUI X, et al. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells[J]. Nature Communications, 2017, 8: 16045. [50] KIM Y C, KIM K H, SON D Y, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging[J]. Nature, 2017, 550: 87-91. [51] GLUSHKOVA A, ANDRIČEVICĆ P, SMAJDA R, et al. Ultrasensitive 3D aerosol-jet-printed perovskite X-ray photodetector[J]. ACS Nano, 2021, 15(3): 4077-4084. [52] ZHANG P, YANG J X, WEI S H. Manipulation of cation combinations and configurations of halide double perovskites for solar cell absorbers[J]. Journal of Materials Chemistry A, 2018, 6(4): 1809-1815. [53] SAPAROV B, MITZI D B. Organic-inorganic perovskites: structural versatility for functional materials design[J]. Chemical Reviews, 2016, 116(7): 4558-4596. [54] BHALLA A S, GUO R, ROY R. The perovskite structure-a review of its role in ceramic science and technology[J]. Material Research Innovations, 2000, 4(1): 3-26. [55] MCCLURE E T, BALL M R, WINDL W, et al. Cs2AgBiX6 (X=Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors[J]. Chemistry of Materials, 2016, 28(5): 1348-1354. [56] VOLONAKIS G, HAGHIGHIRAD A A, MILOT R L, et al. Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap[J]. The Journal of Physical Chemistry Letters, 2017, 8(4): 772-778. [57] OKAZAKI K, FUKUSHIMA H, NAKAUCHI D, et al. Investigation of Er∶Bi4Ge3O12 single crystals emitting near-infrared luminescence for scintillation detectors[J]. Journal of Alloys and Compounds, 2022, 903: 163834. [58] OKAZAKI K, ONODA D, FUKUSHIMA H, et al. Characterization of scintillation properties of Nd-doped Bi4Ge3O12 single crystals with near-infrared luminescence[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(16): 21677-21684. [59] YAO D L, GU M, LIU X L, et al. Fabrication and performance of columnar CsI(Tl) scintillation films with single preferred orientation[J]. IEEE Transactions on Nuclear Science, 2013, 60(3): 1632-1636. [60] CHA B K, KIM J Y, KIM T J, et al. Fabrication and imaging characterization of high sensitive CsI(Tl) and Gd2O2S(Tb) scintillator screens for X-ray imaging detectors[J]. Radiation Measurements, 2010, 45(3/4/5/6): 742-745. [61] EVANS R D. The atomic nucleus[M]. New York: McGraw-Hill, 1955. [62] 孟 钢, 叶雨琪, 范黎明, 等. 卤化物钙钛矿射线探测器材料研究进展[J]. 无机材料学报, 2020, 35(11): 1203-1213. MENG G, YE Y Q, FAN L M, et al. Recent progress of halide perovskite radiation detector materials[J]. Journal of Inorganic Materials, 2020, 35(11): 1203-1213 (in Chinese). [63] AHN C W, JO J H, KIM J C, et al. Highly ordered lead-free double perovskite halides by design[J]. Journal of Materiomics, 2020, 6(4): 651-660. [64] STOUMPOS C C, MALLIAKAS C D, PETERS J A, et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection[J]. Crystal Growth & Design, 2013, 13(7): 2722-2727. [65] HE Y H, ALEXANDER G C B, DAS S, et al. Controlling the vapor transport crystal growth of Hg3Se2I2 hard radiation detector using organic polymer[J]. Crystal Growth & Design, 2019, 19(4): 2074-2080. [66] WANG X, LI Y W, XU Y B, et al. Solution-processed halide perovskite single crystals with intrinsic compositional gradients for X-ray detection[J]. Chemistry of Materials, 2020, 32(12): 4973-4983. [67] LI Z, YANG M J, PARK J S, et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys[J]. Chemistry of Materials, 2016, 28(1): 284-292. [68] JIANG J Z, XIONG M, FAN K, et al. Synergistic strain engineering of perovskite single crystals for highly stable and sensitive X-ray detectors with low-bias imaging and monitoring[J]. Nature Photonics, 2022, 16: 575-581. [69] HUANG Y M, QIAO L, JIANG Y Z, et al. A-site cation engineering for highly efficient MAPbI3 single-crystal X-ray detector[J]. Angewandte Chemie, 2019, 58(49): 17834-17842. [70] LIU Y C, ZHANG Y X, ZHU X J, et al. Triple-cation and mixed-halide perovskite single crystal for high-performance X-ray imaging[J]. Advanced Materials, 2021, 33(8): e2006010. [71] WEI W, ZHANG Y, XU Q, et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging[J]. Nature Photonics, 2017, 11: 315-321. [72] FAN Z F, LIU J, ZUO W T, et al. Solution-processed MAPbBr3 and CsPbBr3 single-crystal detectors with improved X-Ray sensitivity via interfacial engineering[J]. Physica Status Solidi Applied Research, 2020, 217(9): 2000104. [73] SAKHATSKYI K, TUREDI B, MATT G J, et al. Stable perovskite single-crystal X-ray imaging detectors with single-photon sensitivity[J]. Nature Photonics, 2023, 17: 510-517. [74] YANG B, PAN W C, WU H D, et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging[J]. Nature Communications, 2019, 10: 1989. [75] CUI F C, ZHANG P, ZHANG L Z, et al. Liquid-phase epitaxial growth of large-area MAPbBr3-nCln/CsPbBr3 perovskite single-crystal heterojunction for enhancing sensitivity and stability of X-ray detector[J]. Chemistry of Materials, 2022, 34(21): 9601-9612. [76] JIN P, TANG Y J, LI D W, et al. Realizing nearly-zero dark current and ultrahigh signal-to-noise ratio perovskite X-ray detector and image array by dark-current-shunting strategy[J]. Nature Communications, 2023, 14: 626. [77] YAKUNIN S, DIRIN D N, SHYNKARENKO Y, et al. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites[J]. Nature Photonics, 2016, 10: 585-589. [78] HE Y H, KE W J, ALEXANDER G C B, et al. Resolving the energy of γ-ray photons with MAPbI3 single crystals[J]. ACS Photonics, 2018, 5(10): 4132-4138. [79] LIU X, XU M, HAO Y Y, et al. Solution-grown formamidinium hybrid perovskite (FAPbBr3) single crystals for α-particle and γ-ray detection at room temperature[J]. ACS Applied Materials & Interfaces, 2021, 13(13): 15383-15390. [80] ZHAO L, ZHOU Y, SHI Z F, et al. High-yield growth of FACsPbBr3 single crystals with low defect density from mixed solvents for gamma-ray spectroscopy[J]. Nature Photonics, 2023, 17: 315-323. |
[1] | SUN Yuanlong, HU Ziyu, ZHENG Guozong. Growth and Photoelectric Properties Characterization of Large-Sized CH3NH3PbBr3 Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1313-1318. |
[2] | MA Qisi, LIU Jianggao, SHE Weilin, CAO Cong, ZHANG Lichao, ZHAO Chao, FAN Yexia, ZHOU Zhenqi. Effect of Furnace Air Convection on the Temperature Field of Tellurium Zinc Cadmium Crystal Growth Based on CGSim Simulation [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1344-1351. |
[3] | LING Hao, XU Le, CHEN Sixian, TANG Yuanzhi, SUN Haibin, GUO Xue, FENG Yurun, HU Qiangqiang. Growth and Optical Properties of Large Size CsCu2I3 Single Crystal by Solution Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1121-1126. |
[4] | AI Jiaxin, WAN Hongping, QIAN Junbing, WEI Hua. Influence of VGF Indium Phosphide Single Crystal Furnace Heater on the Thermal Field Distribution in the Furnace [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 781-791. |
[5] | XING Jiabin, LI Wei, JIA Songyan, MA Yali, LI Xue, ZHENG Qiang. Preparation of Highly Dispersed Nano Calcium Carbonate by Low-Temperature Carbonization Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 864-872. |
[6] | HUANG Changbao, HU Qianqian, ZHU Zhicheng, LI Ya, MAO Changyu, XU Junjie, WU Haixin, NI Youbao. Growth and Device Fabrication of Mid to Far-Infrared Cr2+/Fe2+∶CdSe Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 551-553. |
[7] | CAO Cong, LIU Jianggao, FAN Yexia, LI Zhenxing, ZHOU Zhenqi, MA Qisi, NIU Jiajia. Relationship Between Temperature Gradient and Interfacial Shape Stability of CZT Crystal Growth [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 641-648. |
[8] | WANG Mengmeng, YIN Yanru, DING Xiaoyuan, ZHANG Jing, FU Xiuwei, JIA Zhitai, TAO Xutang. Research Progress of Sesquioxide Crystals and Its Laser Performances in the Band of 1~3 μm [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(7): 1169-1194. |
[9] | LIU Xiaohu, LI Jianfu, ZHU Zhaojie, TU Chaoyang, WANG Geyang, YANG Jinfang, ZHU Jiangfeng, WANG Yan. Research Progress of Yb∶CaGdAlO4 Crystal and Its Ultra Fast Laser Technology [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(7): 1195-1207. |
[10] | SUN Guihua, ZHANG Qingli, LI Jiahong, LUO Jianqiao, WANG Xiaofei, GAO Jinyun. Crystal Growth and Spectral Properties of Yb,Ho∶GdScO3 Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(7): 1243-1249. |
[11] | LIU Qingxiong, WANG Tianyu, LIU Fuan, WU Qian, YIN Yanru, HE Chongjun, GAO Zeliang, XIA Mingjun. Growth and Photoelectric Properties of Nonlinear Optical Crystal K3B6O10Br [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(7): 1296-1301. |
[12] | YAN Tao, FAN Yujie, XU Feng, CHEN Yu, LUO Min. Electro-Optic Effect and Growth of KLi(HC3N3O3)·2H2O Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(7): 1302-1307. |
[13] | WEI Lingli, NI Youbao, HUANG Changbao, WU Haixin, WANG Zhenyou, HU Qianqian, YU Xuezhou, LIU Guojin, ZHOU Qiang. Growth and Properties of Large Size ZnTe Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(7): 1317-1324. |
[14] | ZHANG Zeyu, WU Yufei, WANG Tao, ZHANG Jian, JIA Zhitai, TAO Xutang. Growth and Property of Sapphire Single Crystal Fibers [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(7): 1335-1344. |
[15] | GUO Jun, LIU Jian, CHEN Peng, SONG Qingsong, ZHANG Zhiheng, XU Xiaodong, XU Jun. Growth and Spectral Properties of Nd∶CaYAlO4 Single Crystal Fibers [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(7): 1345-1351. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||