JOURNAL OF SYNTHETIC CRYSTALS ›› 2024, Vol. 53 ›› Issue (4): 572-584.
• Reviews • Previous Articles Next Articles
ZHANG Qingwen, SHAN Dongming, ZHANG Hu, DING Ran
Received:
2023-11-20
Online:
2024-04-15
Published:
2024-04-19
CLC Number:
ZHANG Qingwen, SHAN Dongming, ZHANG Hu, DING Ran. Research Progress on Preparation of Organic-Inorganic Hybrid Lead Halide Perovskite Single-Crystalline Thin-Films by Solution-Processed Space-Confined Method and Their Device Applications[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 572-584.
[1] CHEN Z L, DONG Q F, LIU Y, et al. Thin single crystal perovskite solar cells to harvest below-bandgap light absorption[J]. Nature Communications, 2017, 8: 1890. [2] WEHRENFENNIG C, EPERON G E, JOHNSTON M B, et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites[J]. Advanced Materials, 2014, 26(10): 1584-1589. [3] ADINOLFI V, PENG W, WALTERS G, et al. The electrical and optical properties of organometal halide perovskites relevant to optoelectronic performance[J]. Advanced Materials, 2018, 30(1): 1700764. [4] DONG Q F, FANG Y J, SHAO Y C, et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 2015, 347(6225): 967-970. [5] FANG Y J, DONG Q F, SHAO Y C, et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination[J]. Nature Photonics, 2015, 9: 679-686. [6] SAIDAMINOV M I, HAQUE M A, SAVOIE M, et al. Perovskite photodetectors operating in both narrowband and broadband regimes[J]. Advanced Materials, 2016, 28(37): 8144-8149. [7] ZHANG Y X, LIU Y C, LI Y J, et al. Perovskite CH3NH3Pb(BrxI1-x)3 single crystals with controlled composition for fine-tuned bandgap towards optimized optoelectronic applications[J]. Journal of Materials Chemistry C, 2016, 4(39): 9172-9178. [8] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. [9] LIANG Z, ZHANG Y, XU H F, et al. Out-of-plane cations homogenise perovskite composition for solar cells[J]. Nature, 2023, 624: 557-563. [10] AHMADI M, WU T, HU B. A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics[J]. Advanced Materials, 2017, 29(41): 1605242. [11] DOU L T, YANG Y, YOU J B, et al. Solution-processed hybrid perovskite photodetectors with high detectivity[J]. Nature Communications, 2014, 5: 5404. [12] SAIDAMINOV M I, HAQUE M A, ALMUTLAQ J, et al. Inorganic lead halide perovskite single crystals: phase-selective low-temperature growth, carrier transport properties, and self-powered photodetection[J]. Advanced Optical Materials, 2017, 5(2): 1600704. [13] SHAIKH P A, SHI D, RETAMAL J R D, et al. Schottky junctions on perovskite single crystals: light-modulated dielectric constant and self-biased photodetection[J]. Journal of Materials Chemistry C, 2016, 4(35): 8304-8312. [14] YANG Z Q, DENG Y H, ZHANG X W, et al. High-performance single-crystalline perovskite thin-film photodetector[J]. Advanced Materials, 2018, 30(8): 1704333. [15] WANG H, KIM D H. Perovskite-based photodetectors: materials and devices[J]. Chemical Society Reviews, 2017, 46(17): 5204-5236. [16] HASSAN Y, ASHTON O J, PARK J H, et al. Facile synthesis of stable and highly luminescent methylammonium lead halide nanocrystals for efficient light emitting devices[J]. Journal of the American Chemical Society, 2019, 141(3): 1269-1279. [17] LANZETTA L, MARIN-BELOQUI J M, SANCHEZ-MOLINA I, et al. Two-dimensional organic tin halide perovskites with tunable visible emission and their use in light-emitting devices[J]. ACS Energy Letters, 2017, 2(7): 1662-1668. [18] LIN K B, XING J, QUAN L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent[J]. Nature, 2018, 562: 245-248. [19] YUAN Z, ZHOU C K, TIAN Y, et al. One-dimensional organic lead halide perovskites with efficient bluish white-light emission[J]. Nature Communications, 2017, 8: 14051. [20] WANG K Y, SUN W Z, LI J K, et al. Unidirectional lasing emissions from CH3NH3PbBr3 perovskite microdisks[J]. ACS Photonics, 2016, 3(6): 1125-1130. [21] WANG K Y, WANG S, XIAO S M, et al. Recent advances in perovskite micro- and nanolasers[J]. Advanced Optical Materials, 2018, 6(18): 1800278. [22] YAKUNIN S, PROTESESCU L, KRIEG F, et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites[J]. Nature Communications, 2015, 6: 8056. [23] ZHU H M, FU Y P, MENG F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors[J]. Nature Materials, 2015, 14: 636-642. [24] SHRESTHA S, FISCHER R, MATT G J, et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers[J]. Nature Photonics, 2017, 11: 436-440. [25] WEI H T, FANG Y J, MULLIGAN P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals[J]. Nature Photonics, 2016, 10: 333-339. [26] WEI W, ZHANG Y, XU Q, et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging[J]. Nature Photonics, 2017, 11: 315-321. [27] EPERON G E, STRANKS S D, MENELAOU C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy & Environmental Science, 2014, 7(3): 982-988. [28] BAIKIE T, FANG Y N, KADRO J M, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications[J]. Journal of Materials Chemistry A, 2013, 1(18): 5628-5641. [29] LI N X, LUO Y Q, CHEN Z H, et al. Microscopic degradation in formamidinium-cesium lead iodide perovskite solar cells under operational stressors[J]. Joule, 2020, 4(8): 1743-1758. [30] WANG R, MUJAHID M, DUAN Y, et al. A review of perovskites solar cell stability[J]. Advanced Functional Materials, 2019, 29(47): 1808843. [31] ZHENG X P, HOU Y, BAO C X, et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells[J]. Nature Energy, 2020, 5: 131-140. [32] GUAN Y J, XU M, ZHANG W H, et al. In situ transfer of CH3NH3PbI3 single crystals in mesoporous scaffolds for efficient perovskite solar cells[J]. Chemical Science, 2020, 11(2): 474-481. [33] SONG Y L, BI W H, WANG A R, et al. Efficient lateral-structure perovskite single crystal solar cells with high operational stability[J]. Nature Communications, 2020, 11: 274. [34] XU Q, DATTA A, BECLA K, et al. Development of continuous solution growth method for growth of large and high-quality perovskite single crystals[J]. Chemical Engineering Journal, 2023, 475: 146155. [35] FENG A B, XIE S D, FU X W, et al. Inch-sized thin metal halide perovskite single-crystal wafers for sensitive X-ray detection[J]. Frontiers in Chemistry, 2022, 9: 823868. [36] CHEN Y X, GE Q Q, SHI Y, et al. General space-confined on-substrate fabrication of thickness-adjustable hybrid perovskite single-crystalline thin films[J]. Journal of the American Chemical Society, 2016, 138(50): 16196-16199. [37] LIU Y C, ZHANG Y X, YANG Z, et al. Thinness- and shape-controlled growth for ultrathin single-crystalline perovskite wafers for mass production of superior photoelectronic devices[J]. Advanced Materials, 2016, 28(41): 9204-9209. [38] PENG W, WANG L F, MURALI B, et al. Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells[J]. Advanced Materials, 2016, 28(17): 3383-3390. [39] JING H, PENG R W, MA R M, et al. Flexible ultrathin single-crystalline perovskite photodetector[J]. Nano Letters, 2020, 20(10): 7144-7151. [40] LI C Q, CHEN F T, WANG K Y, et al. Altering heating area assisted space confined method for growth of large scale and high quality MAPbBr3 single crystal thin films[J]. Journal of Materials Chemistry C, 2022, 10(39): 14580-14589. [41] CHEN J, FU Y P, SAMAD L, et al. Vapor-phase epitaxial growth of aligned nanowire networks of cesium lead halide perovskites (CsPbX3, X=Cl, Br, I)[J]. Nano Letters, 2017, 17(1): 460-466. [42] CHEN J, LUO Z Y, FU Y P, et al. Tin(IV)-tolerant vapor-phase growth and photophysical properties of aligned cesium tin halide perovskite (CsSnX3; X=Br, I) nanowires[J]. ACS Energy Letters, 2019, 4(5): 1045-1052. [43] CHEN J, MORROW D J, FU Y P, et al. Single-crystal thin films of cesium lead bromide perovskite epitaxially grown on metal oxide perovskite (SrTiO3)[J]. Journal of the American Chemical Society, 2017, 139(38): 13525-13532. [44] HA S T, LIU X F, ZHANG Q, et al. Synthesis of organic-inorganic lead halide perovskite nanoplatelets: towards high-performance perovskite solar cells and optoelectronic devices[J]. Advanced Optical Materials, 2014, 2(9): 838-844. [45] FANG H J, LI Q, DING J, et al. A self-powered organolead halide perovskite single crystal photodetector driven by a DVD-based triboelectric nanogenerator[J]. Journal of Materials Chemistry C, 2016, 4(3): 630-636. [46] LIU Y C, SUN J K, YANG Z, et al. 20-mm-large single-crystalline formamidinium-perovskite wafer for mass production of integrated photodetectors[J]. Advanced Optical Materials, 2016, 4(11): 1829-1837. [47] LV Q R, LIAN Z P, HE W H, et al. A universal top-down approach toward thickness-controllable perovskite single-crystalline thin films[J]. Journal of Materials Chemistry C, 2018, 6(16): 4464-4470. [48] SCHLIPF J, ASKAR A M, PANTLE F, et al. Top-down approaches towards single crystal perovskite solar cells[J]. Scientific Reports, 2018, 8: 4906. [49] DANG Y Y, LIU Y, SUN Y X, et al. Bulk crystal growth of hybrid perovskite material CH3NH3PbI3[J]. CrystEngComm, 2015, 17(3): 665-670. [50] DANG Y Y, ZHONG C, ZHANG G D, et al. Crystallographic investigations into properties of acentric hybrid perovskite single crystals NH(CH3)3SnX3 (X=Cl, Br)[J]. Chemistry of Materials, 2016, 28: 6968-6974. [51] LV Q R, LIAN Z P, LI Q, et al. Formic acid: an accelerator and quality promoter for nonseeded growth of CH3NH3PbI3 single crystals[J]. Chemical Communications, 2018, 54(9): 1049-1052. [52] SU J, CHEN D P, LIN C T. Growth of large CH3NH3PbX3 (X=I, Br) single crystals in solution[J]. Journal of Crystal Growth, 2015, 422: 75-79. [53] DING J X, ZHAO Y, DU S J, et al. Controlled growth of MAPbBr3 single crystal: understanding the growth morphologies of vicinal hillocks on (100) facet to form perfect cubes[J]. Journal of Materials Science, 2017, 52(13): 7907-7916. [54] MACULAN G, SHEIKH A D, ABDELHADY A L, et al. CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind UV-photodetector[J]. The Journal of Physical Chemistry Letters, 2015, 6(19): 3781-3786. [55] SAIDAMINOV M I, ABDELHADY A L, MACULAN G, et al. Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth[J]. Chemical Communications, 2015, 51(100): 17658-17661. [56] SAIDAMINOV M I, ABDELHADY A L, MURALI B, et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization[J]. Nature Communications, 2015, 6: 7586. [57] YE T, WANG X Z, LI X Q, et al. Ultra-high Seebeck coefficient and low thermal conductivity of a centimeter-sized perovskite single crystal acquired by a modified fast growth method[J]. Journal of Materials Chemistry C, 2017, 5(5): 1255-1260. [58] SHI D, ADINOLFI V, COMIN R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 2015, 347(6221): 519-522. [59] PARK J S, CHOI S, YAN Y, et al. Electronic structure and optical properties of α-CH3NH3PbBr3 perovskite single crystal[J]. The Journal of Physical Chemistry Letters, 2015, 6(21): 4304-4308. [60] YANG Y, YAN Y, YANG M J, et al. Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal[J]. Nature Communications, 2015, 6: 7961. [61] ZHOU H W, NIE Z H, YIN J, et al. Antisolvent diffusion-induced growth, equilibrium behaviours in aqueous solution and optical properties of CH3NH3PbI3 single crystals for photovoltaic applications[J]. RSC Advances, 2015, 5(104): 85344-85349. [62] ZUO C T, DING L M. Lead-free perovskite materials (NH4)3Sb2IxBr9-x[J]. Angewandte Chemie International Edition, 2017, 56(23): 6528-6532. [63] DENG Y H, YANG Z Q, MA R M. Growth of centimeter-scale perovskite single-crystalline thin film via surface engineering[J]. Nano Convergence, 2020, 7(1): 25. [64] BAI Y, ZHANG H X, ZHANG M J, et al. Liquid-phase growth and optoelectronic properties of two-dimensional hybrid perovskites CH3NH3PbX3 (X=Cl, Br, I)[J]. Nanoscale, 2020, 12(2): 1100-1108. [65] LIU X, ZHANG Q C, ZHAO D, et al. Improved crystallization quality of FAPbBr3 single crystals by a seeded solution method[J]. ACS Applied Materials & Interfaces, 2022, 14(45): 51130-51136. [66] GU Z K, HUANG Z D, LI C, et al. A general printing approach for scalable growth of perovskite single-crystal films[J]. Science Advances, 2018, 4(6): eaat2390. [67] KIM T, CHU Y H, LEE J, et al. Confined growth of high-quality single-crystal MAPbBr3 by inverse temperature crystallization for photovoltaic applications[J]. Electronic Materials Letters, 2021, 17(4): 347-354. [68] VIOLA I, MATTEOCCI F, DE MARCO L, et al. Microfluidic-assisted growth of perovskite single crystals for photodetectors[J]. Advanced Materials Technologies, 2023, 8(14): 2300023. [69] ZHANG J S, ZHAO J J, ZHOU Y F, et al. Polarization-sensitive photodetector using patterned perovskite single-crystalline thin films[J]. Advanced Optical Materials, 2021, 9(17): 2100524. [70] ZHANG J S, SONG J P, ZHANG Q. Large-scale perovskite single crystal growth and surface patterning technologies[J]. Small Science, 2023, 3(11): 230085. [71] HUANG R, LIN D H, LIU J Y, et al. Nanochannel-confined growth of crystallographically orientated perovskite nanowire arrays for polarization-sensitive photodetector application[J]. Science China Materials, 2021, 64(10): 2497-2506. [72] SUN Y Y, LIU X Y, DENG W, et al. A three-dimensional confined crystallization strategy toward controllable growth of high-quality and large-area perovskite single crystals[J]. Advanced Functional Materials, 2022, 32(26): 2112758. [73] LEE L, BAEK J, PARK K S, et al. Wafer-scale single-crystal perovskite patterned thin films based on geometrically-confined lateral crystal growth[J]. Nature Communications, 2017, 8: 15882. [74] DI H P, JIANG W, SUN H, et al. Improving the crystallinity of CH3NH4PbBr3 single crystal thin films via controlling the evaporation of methylamine[J]. Thin Solid Films, 2021, 720: 138519. [75] ZHANG X Y, ZHAO D, HUO Z Y, et al. Perovskite (PEA)2Pb(I1-xBrx)4 single crystal thin films for improving optoelectronic performances[J]. Optical Materials, 2021, 117: 111074. [76] WU J M, ZHANG Y Q, YANG S, et al. Thin MAPb0.5Sn0.5I3 perovskite single crystals for sensitive infrared light detection[J]. Frontiers in Chemistry, 2022, 9: 821699. [77] CHEN F T, LI C Q, SHANG C Y, et al. Ultrafast response of centimeter scale thin CsPbBr3 single crystal film photodetector for optical communication[J]. Small, 2022, 18(45): e2203565. [78] BAO C X, CHEN Z L, FANG Y J, et al. Low-noise and large-linear-dynamic-range photodetectors based on hybrid-perovskite thin-single-crystals[J]. Advanced Materials, 2017, 29(39): 1703209. [79] WU X J, LI P P, WEI X F, et al. All-inorganic perovskite single crystals for optoelectronic detection[J]. Crystals, 2022, 12(6): 792. [80] LI W G, WANG X D, LIAO J F, et al. Enhanced on-off ratio photodetectors based on lead-free Cs3Bi2I9 single crystal thin films[J]. Advanced Functional Materials, 2020, 30(12): 1909701. [81] ZHAO J J, KONG G L, CHEN S L, et al. Single crystalline CH3NH3PbI3 self-grown on FTO/TiO2 substrate for high efficiency perovskite solar cells[J]. Science Bulletin, 2017, 62(17): 1173-1176. [82] CHEN Z L, TUREDI B, ALSALLOUM A Y, et al. Single-crystal MAPbI3 perovskite solar cells exceeding 21% power conversion efficiency[J]. ACS Energy Letters, 2019, 4(6): 1258-1259. [83] ALSALLOUM A Y, TUREDI B, ZHENG X P, et al. Low-temperature crystallization enables 21.9% efficient single-crystal MAPbI3 inverted perovskite solar cells. ACS Energy Letters, 2020, 5(2): 657-662. [84] ALSALLOUM A Y, TUREDI B, ALMASABI K, et al. 22.8%-Efficient single-crystal mixed-cation inverted perovskite solar cells with a near-optimal bandgap[J]. Energy & Environmental Science, 2021, 14(4): 2263-2268. [85] ALMASABI K, ZHENG X P, TUREDI B, et al. Hole-transporting self-assembled monolayer enables efficient single-crystal perovskite solar cells with enhanced stability[J]. ACS Energy Letters, 2023, 8(2): 950-956. [86] LI N, FENG A B, GUO X B, et al. Engineering the hole extraction interface enables single-crystal MAPbI3 perovskite solar cells with efficiency exceeding 22% and superior indoor response[J]. Advanced Energy Materials, 2022, 12(7): 2103241. [87] YU W L, LI F, YU L Y, et al. Single crystal hybrid perovskite field-effect transistors[J]. Nature Communications, 2018, 9: 5354. [88] CHEN W J, HUANG Z M, YAO H T, et al. Highly bright and stable single-crystal perovskite light-emitting diodes[J]. Nature Photonics, 2023, 17: 401-407. |
[1] | LI Yang, CUI Nan, FU Nianqing, CHEN Youchen, PAN Shusheng, LIN Shenghuang. Applications of Flexible Transparent 2D Optoelectronic Devices in Intelligent Information Fields [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1087-1105. |
[2] | XU Zhonghui, ZHAO Shuliang, LIU Chuanchuan. First-Principles Study on Photogalvanic Effect of Vacancy Defects on Monolayer 2H-MoTe2 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(12): 2048-2054. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||