[1] LU X M, MOUTHAAN K, SOON Y T. Wideband bandpass filters with SAW-filter-like selectivity using chip SAW resonators[J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(1): 28-36. [2] RUPPEL C C W. Acoustic wave filter technology-a review[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64(9): 1390-1400. [3] SU R X, SHEN J Y, LU Z T, et al. Wideband and low-loss surface acoustic wave filter based on 15° YX-LiNbO3/SiO2/Si structure[J]. IEEE Electron Device Letters, 2021, 42(3): 438-441. [4] 刘 宏, 桑元华, 孙德辉, 等. 信息时代的铌酸锂晶体: 进展与展望[J]. 人工晶体学报, 2021, 50(4): 708-715. LIU H, SANG Y H, SUN D H, et al. Lithium niobate crystals in the information age: progress and prospect[J]. Journal of Synthetic Crystals, 2021, 50(4): 708-715 (in Chinese). [5] BUTAUD E, TAVEL B, BALLANDRAS S, et al. Smart CutTM piezo on insulator (POI) substrates for high performances SAW components[C]//2020 IEEE International Ultrasonics Symposium (IUS). Las Vegas, NV, USA. IEEE, 2020: 1-4. [6] HAISMA J, SPIERINGS G A C M, BIERMANN U K P, et al. Silicon-on-insulator wafer bonding-wafer thinning technological evaluations[J]. Japanese Journal of Applied Physics, 1989, 28(8): 1426. [7] BRUEL M. Silicon on insulator material technology[J]. Electronics Letters, 1995, 31(14): 1201. [8] BOES A, CORCORAN B, CHANG L, et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits[J]. Laser & Photonics Reviews, 2018, 12(4): 1700256. [9] YAN Y Q, HUANG K, ZHOU H Y, et al. Wafer-scale fabrication of 42° rotated Y-cut LiTaO3-on-insulator (LTOI) substrate for a SAW resonator[J]. ACS Applied Electronic Materials, 2019, 1(8): 1660-1666. [10] 丁雨憧, 何 杰, 陈哲明, 等. 硅基钽酸锂压电单晶复合薄膜材料及应用[J]. 压电与声光, 2023, 45(1): 66-71. DING Y C, HE J, CHEN Z M, et al. Single-crystal LiTaO3 composite film material on Si substrate and its applications[J]. Piezoelectrics & Acoustooptics, 2023, 45(1): 66-71 (in Chinese). [11] JIA Y C, WANG L, CHEN F. Ion-cut lithium niobate on insulator technology: recent advances and perspectives[J]. Applied Physics Reviews, 2021, 8(1): 011307. [12] KE S Y, LI D K, CHEN S Y. A review: wafer bonding of Si-based semiconductors[J]. Journal of Physics D Applied Physics, 2020, 53(32): 323001. [13] 杨金凤, 商继芳, 李清连, 等. 非对称扩散工艺制备近化学计量比钽酸锂晶体的研究[J]. 人工晶体学报, 2022, 51(7): 1141-1146. YANG J F, SHANG J F, LI Q L, et al. Preparation of near stoichiometric lithium tantalate crystal by asymmetric diffusion technique[J]. Journal of Synthetic Crystals, 2022, 51(7): 1141-1146 (in Chinese). [14] THIRUMDAS R, KOTHAKOTA A, ANNAPURE U, et al. Plasma activated water (PAW): chemistry, physico-chemical properties, applications in food and agriculture[J]. Trends in Food Science & Technology, 2018, 77: 21-31. [15] SAM M, JOJITH R, RADHIKA N. Progression in manufacturing of functionally graded materials and impact of thermal treatment—a critical review[J]. Journal of Manufacturing Processes, 2021, 68: 1339-1377. [16] KIM M S, PURUSHOTHAMAN M, KIM H T, et al. Removal of EUV exposed hydrocarbon from Ru capping layer of EUV mask using the mixture of alkaline solutions and organic solvents[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555: 72-79. [17] 刘等等, 帅 垚, 黄诗田, 等. 基于混合气体活化的硅基钽酸锂晶圆键合研究[J]. 电子元件与材料, 2023, 42(6): 693-698. LIU D D, SHUAI Y, HUANG S T, et al. Si-based lithium tantalate wafer bonding based on mixed gas activation[J]. Electronic Components and Materials, 2023, 42(6): 693-698 (in Chinese). [18] 许继开. LiNbO3与硅基材料表面活化低温直接键合及应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. XU J K. Low-temperature direct bonding between LiNbO3 and silicon-based materials and its application[D].Harbin: Harbin Institute of Technology, 2021 (in Chinese). [19] ZHAI K, HE Q, LI L, et al. Study on chemical mechanical polishing of silicon wafer with megasonic vibration assisted[J]. Ultrasonics, 2017, 80: 9-14. [20] LASKY J B. Wafer bonding for silicon-on-insulator technologies[J]. Applied Physics Letters, 1986, 48(1): 78-80. [21] LOWEN W K, BROGE E C. Effects of dehydration and chemisorbed materials on the surface properties of amorphous silica[J]. The Journal of Physical Chemistry, 1961, 65(1): 16-19. [22] HOCKEY J A, PETHICA B A. Surface hydration of silicas[J]. Transactions of the Faraday Society, 1961, 57: 2247-2262. [23] PLACH T, HINGERL K, TOLLABIMAZRAEHNO S, et al. Mechanisms for room temperature direct wafer bonding[J]. Journal of Applied Physics, 2013, 113(9): 94905-94905-7. [24] EICHLER M, MICHEL B, THOMAS M, et al. Atmospheric-pressure plasma pretreatment for direct bonding of silicon wafers at low temperatures[J]. Surface and Coatings Technology, 2008, 203(5/6/7): 826-829. [25] SCHNELL M, HORST T, QUICKER P. Thermal treatment of sewage sludge in Germany: a review[J]. Journal of Environmental Management, 2020, 263: 110367. [26] TAKAGI H. Direct bonding[J]. 3D and Circuit Integration of MEMS, 2021, 12: 279-288. [27] LIM C M, ZHAO Z Q, SUMITA K, et al. Operation of (111) Ge-on-insulator n-channel MOSFET fabricated by smart-cut technology[J]. IEEE Electron Device Letters, 2020, 41(7): 985-988. [28] TONG Q Y, CHA G, GAFITEANU R, et al. Low temperature wafer direct bonding[J]. Journal of Microelectromechanical Systems, 1994, 3(1): 29-35. [29] MASZARA W P, GOETZ G, CAVIGLIA A, et al. Bonding of silicon wafers for silicon-on-insulator[J]. Journal of Applied Physics, 1988, 64(10): 4943-4950. [30] 刘泽翰, 康汝燕, 程鹏鹏, 等. 晶圆低温直接键合技术研究进展[J]. 半导体光电, 2021, 42(5): 603-609. LIU Z H, KANG R Y, CHENG P P, et al. Research progress of wafer low temperature direct bonding technology[J]. Semiconductor Optoelectronics, 2021, 42(5): 603-609 (in Chinese). [31] YEO C Y, XU D W, YOON S F, et al. Low temperature direct wafer bonding of GaAs to Si via plasma activation[J]. Applied Physics Letters, 2013, 102(5): 054107. [32] YANG R, WANG Z H, LEE J, et al. 6H-SiC microdisk torsional resonators in a “smart-cut” technology[J]. Applied Physics Letters, 2014, 104(9): 091906. [33] PETER R A, JAMES J Q L, MAAIKE M V T. Handbook of wafer bonding[M]. Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2000: 101-105. [34] MEYER R, KONONCHUCK O, MORICEAU H, et al. Study of high-temperature Smart CutTM: application to silicon-on-sapphire films and to thin foils of single crystal silicon[J]. Solid-State Electronics, 2016, 115: 225-231. |