[1] WANG P, XIA H, LI Q, et al. Sensing infrared photons at room temperature: from bulk materials to atomic layers[J]. Small, 2019, 15(46): 1904396. [2] 黄 哲, 伍思远, 陈柏杉, 等. 探测器级碲锌镉晶体生长及缺陷研究进展[J]. 中国有色金属学报, 2022, 32(8): 2327-2344. HUANG Z, WU S Y, CHEN B S, et al. Research progress on CdZnTe crystals growth and defects for radiation detection applications[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(8): 2327-2344 (in Chinese). [3] HOSSAIN A, BOLOTNIKOV A E, CAMARDA G S, et al. Extended defects in CdZnTe crystals: effects on device performance[J]. Journal of Crystal Growth, 2010, 312(11): 1795-1799. [4] LIANG X Y, MIN J H, YANG L Q, et al. Study on Te inclusions distributions of different solid-liquid interface shapes within CdZnTe crystals[J]. Materials Science in Semiconductor Processing, 2015, 40: 939-942. [5] ZHANG N, YECKEL A, BURGER A, et al. Anomalous segregation during electrodynamic gradient freeze growth of cadmium zinc telluride[J]. Journal of Crystal Growth, 2011, 325(1): 10-19. [6] XU C, ZHOU C H, SUN S W, et al. Investigation on relations of twins and inclusions distribution with growth solid-liquid interface in Cd0.96Zn0.04Te crystal[J]. Crystal Research and Technology, 2018, 53(6): 1800020. [7] DIVECHA M S, MCCOY J J, DERBY J J. Optimizing ACRT to reduce inclusion formation during the VGF growth of cadmium zinc telluride: ii. Application to experiments[J]. Journal of Crystal Growth, 2021, 576: 126385. [8] ZHOU B R, JIE W Q, WANG T, et al. Modification of growth interface of CdZnTe crystals in THM process by ACRT[J]. Journal of Crystal Growth, 2018, 483: 281-284. [9] ÜNAL M, BALBAŞı B, GENÇ A M, et al. Interface stability problem towards the end of THM growth of cadmium zinc telluride crystals[J]. Journal of Crystal Growth, 2022, 584: 126576. [10] PARFENIUK C, WEINBERG F, SAMARASEKERA I V, et al. Measured critical resolved shear stress and calculated temperature and stress fields during growth of CdZnTe[J]. Journal of Crystal Growth, 1992, 119(3/4): 261-270. [11] ZHOU X W, WARD D K, WONG B M, et al. Melt-growth dynamics in CdTe crystals[J]. Physical Review Letters, 2012, 108(24): 245503. [12] YAN B, LIU W H, YU C, et al. Optimizing the temperature gradient for CdZnTe crystal growth using the vertical Bridgman-Stockbarger method[J]. Journal of Crystal Growth, 2023, 621: 127378. [13] RUDOLPH P, ENGEL A, SCHENTKE I, et al. Distribution and genesis of inclusions in CdTe and (Cd, Zn)Te single crystals grown by the Bridgman method and by the travelling heater method[J]. Journal of Crystal Growth, 1995, 147(3/4): 297-304. [14] RUDOLPH P, NEUBERT M, M: UHLBERG M. Defects in CdTe bridgman monocrystals caused by nonstoichiometric growth conditions[J]. Journal of Crystal Growth, 1993, 128(1/2/3/4): 582-587. [15] YADAVA R D S, BAGAI R K, BORLE W N. Theory of Te precipitation and related effects in CdTe crystals[J]. Journal of Electronic Materials, 1992, 21(10): 1001-1016. [16] SWAIN S K, JONES K A, DATTA A, et al. Study of different cool down schemes during the crystal growth of detector grade CdZnTe[J]. IEEE Transactions on Nuclear Science, 2011, 58(5): 2341-2345. [17] LIU X H, JIE W Q, ZHOU Y H. Numerical analysis of Cd1-xZnxTe crystal growth by the vertical Bridgman method using the accelerated crucible rotation technique[J]. Journal of Crystal Growth, 2000, 219(1/2): 22-31. [18] 刘江高, 吴 卿. 碲锌镉晶体生长全局热传递模拟模型准确度研究[J]. 激光与红外, 2018, 48(3): 343-347. LIU J G, WU Q. Study on accuracy of global heat transfer simulation model for CdZnTe crystal growth[J]. Laser & Infrared, 2018, 48(3): 343-347 (in Chinese). [19] 介万奇. Bridgman法晶体生长技术的研究进展[J]. 人工晶体学报, 2012, 41(增刊1): 24-35. JIE W Q. Research progress of Bridgman crystal growth technology[J]. Journal of Synthetic Crystals, 2012, 41(supplement 1): 24-35 (in Chinese). [20] 许秀娟, 折伟林, 周 翠, 等. 碲锌镉晶体Zn组分的光致发光实用化研究[J]. 激光与红外, 2013, 43(1): 54-57. XU X J, SHE W L, ZHOU C, et al. Study on the Zn composition test in cadmium zinc telluride crystal by photoluminescence[J]. Laser & Infrared, 2013, 43(1): 54-57 (in Chinese). |