[1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238: 37-38. [2] YANG Y C, WEN J W, WEI J H, et al. Polypyrrole-decorated Ag-TiO2 nanofibers exhibiting enhanced photocatalytic activity under visible-light illumination[J]. ACS Applied Materials & Interfaces, 2013, 5(13): 6201-6207. [3] SHEN Y, LIU S S, LU L, et al. Photocatalytic degradation of toluene by a TiO2 p-n homojunction nanostructure[J]. ACS Applied Nano Materials, 2022, 5(12): 18612-18621. [4] 孟汝浩, 班新星, 左宏森, 等. TiO2/g-C3N4复合粉体的制备及其在紫外/芬顿反应中光催化性能[J]. 人工晶体学报, 2022, 51(8): 1466-1472. MENG R H, BAN X X, ZUO H S, et al. Preparation of TiO2/g-C3N4 composite powder and its photocatalytic performance in UV/fenton reaction[J]. Journal of Synthetic Crystals, 2022, 51(8): 1466-1472 (in Chinese). [5] KUERBANJIANG B, WIEDWALD U, HAERING F, et al. Exchange bias of Ni nanoparticles embedded in an antiferromagnetic IrMn matrix[J]. Nanotechnology, 2013, 24(45): 455702. [6] WANG X C, WU P X, WANG Z Q, et al. Chlorine-modified Ru/TiO2 catalyst for selective guaiacol hydrodeoxygenation[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(8): 3083-3094. [7] ZHOU Y, OUYANG W L, WANG Y J, et al. Core-shell structured NH2-UiO-66@TiO2 photocatalyst for the degradation of toluene under visible light irradiation[J]. Acta Physico Chimica Sinica, 2021, 37(8): 2009045. [8] 郑思源, 王雅文, 樊彩梅. 三维有序大孔TiO2/CeO2光催化剂的制备及性能研究[J]. 人工晶体学报, 2018, 47(7): 1324-1329. ZHENG S Y, WANG Y W, FAN C M. Synthesis and photocatalytic performance of three dimension ordered macroporous TiO2/CeO2 composite photoctatalyst[J]. Journal of Synthetic Crystals, 2018, 47(7): 1324-1329 (in Chinese). [9] ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271. [10] GAO H, ZHOU J, DAI D, et al. Photocatalytic activity and electronic structure analysis of N-doped anatase TiO2: a combined experimental and theoretical study[J]. Chemical Engineering & Technology, 2009, 32(6): 867-872. [11] BANERJEE S, ZANGIABADI A, MAHDAVI-SHAKIB A, et al. Quantitative structural characterization of catalytically active TiO2 nanoparticles[J]. ACS Applied Nano Materials, 2019, 2(10): 6268-6276. [12] 左玉香. 氮掺杂二氧化钛光催化降解甲基橙的研究[J]. 化学工程师, 2011, 25(11): 38-39. ZUO Y X. Research on photocatalysis degradation of N-doped TiO2 to methyl orange[J]. Chemical Engineer, 2011, 25(11): 38-39 (in Chinese). [13] NING J F, ZHAO G P. A fractal study of sound propagation characteristics in roughened porous materials[J]. Wave Motion, 2017, 68: 190-201. [14] REZA K M, KURNY A, GULSHAN F. Parameters affecting the photocatalytic degradation of dyes using TiO2: a review[J]. Applied Water Science, 2017, 7(4): 1569-1578. [15] 徐世华, 沈风雷. La掺杂对TiO2光催化剂的影响[J]. 稀土, 2010, 31(6): 89-92. XU S H, SHEN F L. Effects of lanthanum on structure and photo absorption performance of TiO2 photocatalyst[J]. Chinese Rare Earths, 2010, 31(6): 89-92 (in Chinese). [16] GOVINDHAN P, PRAGATHISWARAN C. Synthesis and characterization of TiO2@SiO2-Ag nanocomposites towards photocatalytic degradation of rhodamine B and methylene blue[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(8): 8778-8785. [17] 王鑫伟, 车致远, 张 兴, 等. 不同形貌TiO2薄膜的可控制备及其光电化学性能研究[J]. 人工晶体学报, 2021, 50(3): 516-522. WANG X W, CHE Z Y, ZHANG X, et al. Controllable preparation and photoelectrochemical properties of TiO2 films with different morphologies[J]. Journal of Intraocular Lenses, 2021, 50(3): 516-522 (in Chinese). [18] NKAMBULE T I, KUVAREGA A T, KRAUSE R W M, et al. Synthesis and characterisation of Pd-modified N-doped TiO2 for photocatalytic degradation of natural organic matter (NOM) fractions[J]. Environmental Science and Pollution Research, 2012, 19(9): 4120-4132. [19] AKPAN U G, HAMEED B H. The advancements in sol-gel method of doped-TiO2 photocatalysts[J]. Applied Catalysis A: General, 2010, 375(1): 1-11. [20] ALBAIDANI K, TIMOUMI A, BELHADJ W, et al. Structural, electronic and optical characteristics of TiO2 and Cu-TiO2 thin films produced by sol-gel spin coating[J]. Ceramics International, 2023, 49(22): 36265-36275. [21] SHANG S Q, JIAO X L, CHEN D R. Template-free fabrication of TiO2 hollow spheres and their photocatalytic properties[J]. ACS Applied Materials & Interfaces, 2012, 4(2): 860-865. [22] XU Y, WU Y J, HYUN HUR S, et al. Photocatalytic degradation of bisphenol A by TiO2 mineralized using a polystyrene-peptide template[J]. ChemistrySelect, 2022, 7(46): e202204102. [23] 杜晶晶, 赵军伟, 施 飞, 等. 核壳结构TiO2微球的制备及其光催化性能[J]. 人工晶体学报, 2023, 52(10): 1880-1886. DU J J, ZHAO J W, SHI F, et al. Preparation of core-shell TiO2 microspheres and their photocatalytic properties[J]. Journal of Intraocular Lenses, 2023, 52(10): 1880-1886 (in Chinese). [24] LANGFORD J I, WILSON A J C. Scherrer after sixty years: a survey and some new results in the determination of crystallite size[J]. Journal of Applied Crystallography, 1978, 11(2): 102-113. [25] CHOJNOWSKI G, PRZENIOSŁO R, SOSNOWSKA I, et al. Microstructure evolution and grain growth kinetics in annealed nanocrystalline chromium[J]. The Journal of Physical Chemistry C, 2007, 111(15): 5599-5604. [26] ERDEM B, HUNSICKER R A, SIMMONS G W, et al. XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation[J]. Langmuir, 2001, 17(9): 2664-2669. [27] ZHENG H J, NIU P, ZHAO Z F. Carbon quantum dot sensitized Pt@Bi2WO6/FTO electrodes for enhanced photoelectro-catalytic activity of methanol oxidation[J]. RSC Advances, 2017, 7(43): 26943-26951. [28] OU H H, LO S L, LIAO C H. N-doped TiO2 prepared from microwave-assisted titanate nanotubes (NaxH2-xTi3O7): the effect of microwave irradiation during TNT synthesis on the visible light photoactivity of N-doped TiO2[J]. The Journal of Physical Chemistry C, 2011, 115(10): 4000-4007. [29] TOLIŃSKI T, KOWALCZYK A, CHEŁKOWSKA G. XPS studies of the hybridization effects in RNi4B (R=Ce, Pr, Nd) compounds[J]. Physics Letters A, 2003, 308(1): 75-79. [30] ZHOU H, LI X F, FAN T X, et al. Artificial inorganic leafs for efficient photochemical hydrogen production inspired by natural photosynthesis[J]. Advanced Materials, 2010, 22(9): 951-956. [31] LI X F, FAN T X, ZHANG D, et al. Assembly of metallic nanoparticles with controllable size in nanopores of biomorphic oxide fibers templated by cotton tissue[J]. Journal of Materials Research, 2007, 22(3): 755-762. |