[1] WANG H Y, HUANG R, HAO H, et al. Multiscale grain synergistic by microstructure designed hierarchically structured in BaTiO3-based ceramics with enhanced energy storage density and X9R high-temperature dielectrics application[J]. Journal of Materials Science, 2022, 57(25): 11839-11851. [2] 沈宗洋, 李月明, 王竹梅, 等. 三大无铅压电陶瓷体系的最新研究进展[J]. 人工晶体学报, 2012, 41(增刊): 309-315. SHEN Z Y, LI Y M, WANG Z M, et al. The latest research progress of three lead-free piezoelectric ceramic systems[J]. Journal of Synthetic Crystals, 2012, 41(Supplyment): 309-315 (in Chinese). [3] LI Z, ZHANG D D, WANG C B, et al. The influence of BaTiO3 content on the energy storage properties of Bi0.5Na0.5TiO3-Bi(Mg2/3Nb1/3)O3 lead-free ceramics[J]. Crystals, 2023, 13(5): 733. [4] CHEN B, NIU M S, PENG Z H, et al. Dielectric properties of lead-free BNT-based ferroelectric ceramics near the morphotropic phase boundary[J]. Materials Chemistry and Physics, 2020, 256: 123639. [5] 吴文娟, 肖定全, 吴家刚, 等. BNT-BT粉体的低温合成及陶瓷性能研究[J]. 功能材料, 2011, 42(11): 2050-2052+2056. WU W J, XIAO D Q, WU J G, et al. Investigation of the low-temperature synthesis and the properties of BNT-BT ceramics[J]. Journal of Functional Materials, 2011, 42(11): 2050-2052+2056 (in Chinese). [6] XU Q, XIE J, HE Z C, et al. Energy-storage properties of Bi0.5Na0.5TiO3-BaTiO3-KNbO3 ceramics fabricated by wet-chemical method[J]. Journal of the European Ceramic Society, 2017, 37(1): 99-106. [7] KUMAR K, KUMAR B. Effect of Nb-doping on dielectric, ferroelectric and conduction behaviour of lead free Bi0.5(Na0.5K0.5)0.5TiO3 ceramic[J]. Ceramics International, 2012, 38(2): 1157-1165. [8] MA H Y, CHEN X M, WANG J, et al. Structure, dielectric and ferroelectric properties of 0.92 Na0.5Bi0.5TiO3-0.06BaTiO3-0.02K0.5Na0.5NbO3 lead-free ceramics: effect of Co2O3 additive[J]. Ceramics International, 2013, 39(4): 3721-3729. [9] JO W, SCHAAB S, SAPPER E, et al. On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6mol% BaTiO3[J]. Journal of Applied Physics, 2011, 110(7): 74106-74106-9. [10] LIU X, ZHAI J W, SHEN B, et al. Study of temperature-induced structural evolution in (Na0.5Bi0.5)TiO3-(K0.5Bi0.5)TiO3-(K0.5Na0.5)NbO3 lead-free ceramics[J]. Current Applied Physics, 2017, 17(5): 774-780. [11] ZHAO M J, XIA W M, LIANG Y N, et al. Ba(Zr0.3Ti0.7)O3 doping to enhance the dielectric and energy discharging performances of a 0.65Bi0.5Na0.5TiO3-0.35Sr0.7Bi0.2TiO3 lead-free ceramic[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(27): 21702-21712. [12] WANG H, LIU H B. Enhanced electrical energy storage performance under low electric fields in Bi(Mg2/3Nb1/3)O3-modified 0.76Bi0.5Na0.5TiO3-0.24SiTiO3 ceramics[J]. Journal of Materials Science: Materials in Electronics, 2023, 34(7): 659. [13] KHEMAKHEM L, KABADOU A, MAALEJ A, et al. New relaxor ceramic with composition BaTi1-x(Zn1/3Nb2/3)xO3[J]. Journal of Alloys and Compounds, 2008, 452(2): 451-455. [14] UCHINO K, NOMURA S. Critical exponents of the dielectric constants in diffused-phase-transition crystals[J]. Ferroelectrics, 1982, 44(1): 55-61. [15] ZUO R Z, FU J, LU S B, et al. Normal to relaxor ferroelectric transition and domain morphology evolution in (K, Na)(Nb, Sb)O3-LiTaO3-BaZrO3 lead-free ceramics[J]. Journal of the American Ceramic Society, 2011, 94(12): 4352-4357. [16] LIU G, LI Y, SHI M Q, et al. An investigation of the dielectric energy storage performance of Bi(Mg2/3Nb1/3)O3-modifed BaTiO3 Pb-free bulk ceramics with improved temperature/frequency stability[J]. Ceramics International, 2019, 45(15): 19189-19196. [17] ZHANG H L, CHEN X F, CAO F, et al. Charge-discharge properties of an antiferroelectric ceramics capacitor under different electric fields[J]. Journal of the American Ceramic Society, 2010, 93(12): 4015-4017. [18] VIOLA G, NING H, REECE M J, et al. Reversibility in electric field-induced transitions and energy storage properties of bismuth-based perovskite ceramics[J]. Journal of Physics D: Applied Physics, 2012, 45(35): 355302. |