[1] DAVIES I J, RAWLINGS R D. Mechanical properties in compression of low density carbon/carbon composites[J]. Composites, 1994, 25(3): 229-236. [2] ZHANG Y, LU Z X, YANG Z Y, et al. Compression behaviors of carbon-bonded carbon fiber composites: experimental and numerical investigations[J]. Carbon, 2017, 116: 398-408. [3] MARTINEZ-VAL R, PEREZ E. Aeronautics and astronautics: recent progress and future trends[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2009, 223(12): 2767-2820. [4] BERTIN J J, CUMMINGS R M. Fifty years of hypersonics: where we’ve been, where we’re going[J]. Progress in Aerospace Sciences, 2003, 39(6/7): 511-536. [5] XIANG Z, SONG Y M, XIONG J, et al. Enhanced electromagnetic wave absorption of nanoporous Fe3O4@carbon composites derived from metal-organic frameworks[J]. Carbon, 2019, 142: 20-31. [6] FANG J Y, SHANG Y S, CHEN Z, et al. Rice husk-based hierarchically porous carbon and magnetic particles composites for highly efficient electromagnetic wave attenuation[J]. Journal of Materials Chemistry C, 2017, 5(19): 4695-4705. [7] SONG Z M, LIU X F, SUN X, et al. Alginate-templated synthesis of CoFe/carbon fiber composite and the effect of hierarchically porous structure on electromagnetic wave absorption performance[J]. Carbon, 2019, 151: 36-45. [8] WANG J Q, YU H Y, YANG Z T, et al. Tubular carbon nanofibers: synthesis, characterization and applications in microwave absorption[J]. Carbon, 2019, 152: 255-266. [9] ZHAO X G, DONG S, HONG C Q, et al. Precursor infiltration and pyrolysis cycle-dependent microwave absorption and mechanical properties of lightweight and antioxidant carbon fiber felts reinforced silicon oxycarbide composites[J]. Journal of Colloid and Interface Science, 2020, 568: 106-116. [10] XU Y G, YUAN L M, ZHANG D Y. Enhancement mechanism of the additional absorbent on the absorption of the absorbing composite using a type-based mixing rule[J]. Journal of Physics D: Applied Physics, 2016, 49(15): 155001. [11] KUANG J L, JIANG P, HOU X J, et al. Dielectric permittivity and microwave absorption properties of SiC nanowires with different lengths[J]. Solid State Sciences, 2019, 91: 73-76. [12] 唐嘉琦. SiCnw三维网络增强磷酸铝复合材料的制备及其吸波性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. TANG J Q. Preparation of SiCnw 3D network reinforced aluminum phosphate composites and study on its microwave absorbing properties[D]. Harbin: Harbin Institute of Technology, 2021 (in Chinese). [13] QIAN J J, SHUI A Z, HE C, et al. Multifunction properties of SiOC reinforced with carbon fiber and in situ SiC nanowires[J]. Ceramics International, 2021, 47(6): 8004-8013. [14] 周新峰. 多孔碳基复合材料的微观结构设计及吸波性能研究[D]. 青岛: 青岛大学, 2021. ZHOU X F. Microstructure design and microwave absorbing properties of porous carbon-based composites[D].Qingdao: Qingdao University, 2021 (in Chinese). [15] 刘 远. 多孔碳基材料的制备与吸波性能研究[D]. 西安: 陕西师范大学, 2020. LIU Y. Preparation and absorption properties of porous carbon based materials[D]. Xi’an: Shaanxi Normal University, 2020 (in Chinese). [16] 董 顺. SiC纳米线的制备和微结构控制及机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. DONG S. Study on the preparation, microstructure control and growth mechanism of silicon carbide nanowires[D]. Harbin: Harbin Institute of Technology, 2014 (in Chinese). [17] XIE Z G, GENG D Y, LIU X G, et al. Magnetic and microwave-absorption properties of graphite-coated (Fe, Ni) nanocapsules[J]. Journal of Materials Science & Technology, 2011, 27(7): 607-614. [18] GE J W, CUI Y, LIU L, et al. Enhanced electromagnetic wave absorption of hybrid-architectures Co@SiOxC[J]. Journal of Alloys and Compounds, 2020, 831: 154442. [19] SUN Y, SUN Y G. Strong and thermostable boron-containing phenolic resin-derived carbon modified three-dimensional needled carbon fiber reinforced silicon oxycarbide composites with tunable high-performance microwave absorption properties[J]. Applied Sciences, 2020, 10(6): 1924. [20] 程 蕾. ZIF-8及其纳米碳复合材料的晶体结构、介电弛豫机制及电化学传感性能研究[D]. 桂林: 广西师范大学, 2021. CHENG L. Crystal structure, dielectric relaxation mechanism and electrochemical sensing behavior of ZIF-8 and ZIF-8/nanocarbon-based composites[D]. Guilin: Guangxi Normal University, 2021 (in Chinese). [21] FENG Y R, GUO X, HUANG K, et al. Enhanced electromagnetic microwave absorption of SiOC ceramics targeting the integration of structure and function[J]. Journal of the European Ceramic Society, 2021, 41(13): 6393-6405. [22] ZHAO Y Z, WANG W, WANG J N, et al. Constructing multiple heterogeneous interfaces in the composite of bimetallic MOF-derivatives and rGO for excellent microwave absorption performance[J]. Carbon, 2021, 173: 1059-1072. [23] WU N N, XU D M, WANG Z, et al. Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods[J]. Carbon, 2019, 145: 433-444. [24] CHEN C, ZENG S F, HAN X C, et al. 3D carbon network supported porous SiOC ceramics with enhanced microwave absorption properties[J]. Journal of Materials Science & Technology, 2020, 54: 223-229. [25] 夏少旭, 李利伟, 史燕妮, 等. GF/ACF电路屏复合材料吸波性能研究[J]. 高科技纤维与应用, 2015, 40(1):53-57. XIA S X, LI L W, SHI Y N, et al. Research on the absorption performance of GF/ACF circuit screen composite materials [J]. High Tech Fibers and Applications, 2015, 40(1):53-57 (in Chinese). [26] LIU Z H, TAO R, BAN G, et al. Absorbing property of multi-layered short carbon fiber absorbing coating[J]. Gazi University Journal of Science, 2017, 30: 29-37. [27] XIE P T, LI H Y, HE B, et al. Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption[J]. Journal of Materials Chemistry C, 2018, 6(32): 8812-8822. [28] ZHANG X M, JI G B, LIU W, et al. Thermal conversion of an Fe3O4@metal-organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material[J]. Nanoscale, 2015, 7(30): 12932-12942. |