[1] BARINOVA O P, DANEVICH F A, DEGODA V Y, et al. First test of crystal as a cryogenic scintillating bolometer[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 613(1): 54-57. [2] BARINOVA O P, CAPPELLA F, CERULLI R, et al. Intrinsic radiopurity of a crystal[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 607(3): 573-575. [3] SOMANI M, SALEEM M, MITTAL M, et al. Structural, photoluminescent and thermoluminescent studies of rare earth ion (RE=Eu3+) doped Sr2SiO4 phosphor[J]. Optik, 2019, 182: 839-847. [4] 赵小杨, 王 佳, 温慧霞, 等. 稀土掺杂钼酸盐发光材料的研究进展[J]. 稀土, 2022, 43(1): 25-38. ZHAO X Y, WANG J, WEN H X, et al. Research progress of rare earth doped molybdate luminescent materials[J]. Chinese Rare Earths, 2022, 43(1): 25-38 (in Chinese). [5] YANG Y Q, YANG H, WANG Q, et al. Study of the supported K2MoO4 catalyst for methanethiol synthesis by one step from high H2S-containing syngas[J]. Catalysis Letters, 2001, 74(3): 221-225. [6] HAO Y J, ZHANG Y H, CHEN A P, et al. Study on methanethiol synthesis from H2S-rich syngas over K2MoO4 catalyst supported on electrolessly Ni-plated SiO2[J]. Catalysis Letters, 2009, 129(3): 486-492. [7] YANG X L, ZHANG J Q, HOU Q H, et al. Regulation of kinetic properties of chemical hydrogen absorption and desorption by cubic K2MoO4 on magnesium hydride[J]. Nanomaterials, 2022, 12(14): 2468. [8] ZHANG L, CAO X F, MA Y L, et al. Pancake-like Fe2(MoO4)3 microstructures: microwave-assisted hydrothermal synthesis, magnetic and photocatalytic properties[J]. New Journal of Chemistry, 2010, 34(9): 2027-2033. [9] HU J Y, CHEN L, ZHONG X, et al. Corrosion inhibition of titanium in hydrochloric acid containing Na2MoO4[J]. International Journal of Electrochemical Science, 2017, 12(10): 8878-8891. [10] SHAHRYARI Z, GHEISARI K, YEGANEH M, et al. Corrosion mitigation ability of differently synthesized polypyrrole (PPy-FeCl3 & PPy-APS) conductive polymers modified with Na2MoO4 on mild steel in 3.5% NaCl solution: comparative study and optimization[J]. Corrosion Science, 2021, 193: 109894. [11] 王 平, 郭小阳, 梁 奇. ZL108铝合金微弧氧化膜的Na2MoO4改性机理[J]. 稀有金属材料与工程, 2015, 44(5): 1191-1196. WANG P, GUO X Y, LIANG Q. Na2MoO4 modifying mechanism of micro-arc oxidation coating on ZL108 aluminum alloy[J]. Rare Metal Materials and Engineering, 2015, 44(5): 1191-1196 (in Chinese). [12] 车顺爱, 林海明, 段瑛滢. 手性钼酸盐介观结构膜的制备方法: CN113136572A[P]. 2021-07-20. CHE S A, LIN H M, DUAN Y Y. Preparation of chiral molybdate mesostructured membranes: CN113136572A[P]. 2021-07-20 (in Chinese). [13] 林海明. 手性介观结构钼酸盐的组装及其在手性分子检测中的应用[D]. 上海: 同济大学, 2020. LIN H M. Assembly of chiral mesoscopic molybdate and its application in chiral molecular detection[D].Shanghai: Tongji University, 2020 (in Chinese). [14] KOLITSCH U. The crystal structures of Phenacite-type Li2(MoO4), and Scheelite-type LiY(MoO4)2 and LiNd(MoO4)2[J]. Zeitschrift für Kristallographie-Crystalline Materials, 2001, 216(8): 449-454. [15] BECKA L N, POLJAK R J. Crystal structure of Na2MoO4 and Na2WO4. Anales Asoc Quim Arg, 1958, 46: 204-209. [16] GATEHOUSE B M, LEVERETT P. Crystal structure of potassium molybdate, K2MoO4[J]. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1969: 849. [17] KOOLS F X N M, KOSTER A S, RIECK G D. The structures of potassium, rubidium and caesium molybdate and tungstate[J]. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 1970, 26(12): 1974-1977. [18] CHEN X, CHEN P, JIANG L W, et al. Luminescence properties of large-size Li2MoO4 single crystal grown by Czochralski method[J]. Journal of Crystal Growth, 2021, 558: 126022. [19] SHIGEMATSU H, NOMURA K, NISHIYAMA K, et al. Structures and phase transitions in Rb2MoO4 and Rb2WO4[J]. Ferroelectrics, 2011, 414(1): 195-200. [20] BRˇEZINA B, HAVRÁNKOVÁ M. Growth of KH2PO4 single crystals in gel[J]. Materials Research Bulletin, 1971, 6(7): 537-543. [21] BORDUI P F, JACCO J C, LOIACONO G M, et al. Growth of large single crystals of KTiOPO4 (KTP) from high-temperature solution using heat pipe based furnace system[J]. Journal of Crystal Growth, 1987, 84(3): 403-408. [22] CHEN C T, WU B C, JIANG A D, et a1. A new type ultraviolet SHG crystal β-BaB2O4[J]. Science China Chemistry, 1985, 28: 235-243. [23] SHEN D Z, HUANG C E. A new nonlinear optical crystal KTP[J]. Progress in Crystal Growth and Characterization, 1985, 11(4): 269-274. [24] CHEN C T, WU Y C, JIANG A, et al. New nonlinear-optical crystal: LiB3O5[J]. Journal of the Optical Society of America b-Optical Physics, 1989, 6: 616-621. [25] LIU L L, YANG Y, YANG Z H, et al. The enhancement of birefringence resulted from anionic dimensionality changes through adjusting cationic density[J]. Journal of Alloys and Compounds, 2017, 717: 317-325. [26] SHI T T, ZHANG F F, LI Y H, et al. Structural diversity of molybdate iodate and fluoromolybdate: syntheses, structures, and calculations on Na3(MoO4)(IO3) and Na3Cs(MoO2F4)2[J]. Inorganic Chemistry, 2020, 59(5): 3034-3041. [27] 潘世烈, 王 颖. 化合物磷钼酸铷和磷钼酸铷非线性光学晶体及制备方法和用途: CN103628135A[P]. 2014-03-12. PAN S L, WANG Y. Compounds rubidium phosphomolybdate and rubidium phosphomolybdate nonlinear optical crystals and methods of preparation and uses thereof: CN103628135A[P]. 2014-03-12 (in Chinese). [28] 安海艳, 侯玉姣. 一种手性杂多钼酸盐、制备方法及非线性光学应用: CN106544736A[P]. 2017-03-29. AN H Y, HOU Y J. A chiral heteropolymolybdate, preparation method and nonlinear optical applications: CN106544736A[P]. 2017-03-29 (in Chinese). [29] ZHANG X Y, LI D N, YANG Z H, et al. Synthesis, crystal structure, and properties of the sodium molybdate fluoride Na3MoO4F[J]. Zeitschrift Für Anorganische und Allgemeine Chemie, 2015, 641(5): 922-926. [30] LV J S, LIU X N, ZHANG X T, et al. Experimental and DFT study of peapod-like Fe2(MoO4)3 nanofibers for photodegradation of ciprofloxacin[J]. Materials Letters, 2021, 290: 129456. [31] ZHU R, JIA K, BI Z, et al. Realizing white emission in Sc2(MoO4)3:Eu3+/Dy3+/Ce3+ phosphors through computation and experiment[J]. Journal of Solid State Chemistry, 2020, 290: 121592. [32] HIZHNYI Y, BORYSYUK V, CHORNII V, et al. Role of native and impurity defects in optical absorption and luminescence of Li2MoO4 scintillation crystals[J]. Journal of Alloys and Compounds, 2021, 867: 159148. [33] WAN S M, ZHANG B, YAO Y N, et al. Raman and density functional theory studies of Li2Mo4O13 structures in crystalline and molten states[J]. Inorganic Chemistry, 2017, 56(22): 14129-14134. [34] ANANDKUMAR B, KRISHNA N G, SOLOMON R V, et al. Synergistic enhancement of corrosion protection of carbon steels using corrosion inhibitors and biocides: molecular adsorption studies, DFT calculations and long-term corrosion performance evaluation[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109842. [35] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2744. [36] YIP T W S, CUSSEN E J, WILSON C. Spontaneous formation of crystalline lithium molybdate from solid reagents at room temperature[J]. Dalton Transactions, 2010(2): 411-417. [37] FORTES A D. Crystal structures of spinel-type Na2MoO4 and Na2WO4 revisited using neutron powder diffraction[J]. Acta Crystallographica Section E, Crystallographic Communications, 2015, 71(6): 592-596. [38] ABBAS S A, MAHMOOD I, SAJJAD M, et al. Spinel-type Na2MoO4 and Na2WO4 as promising optoelectronic materials: first-principle DFT calculations[J]. Chemical Physics, 2020, 538: 110902. |