[1] AMADOR M, DOLORES M, BELEN A G. Sunlike white light-emitting diodes based on rare-earth-free luminescent materials[J]. Materials, 2022, 15(5): 1680-1680. [2] HONGXIA L, YUXIN L, TAO Z, et al. Impact of gamma-ray irradiation on photo emission from InGaN/GaN LED[J]. Microelectronics Reliability, 2023, 142-142. [3] KALIL K, TOMONORI T, YASUKI Y. Chromaticity performance characterization of curved oled light sources[J]. Proceedings of the International Display Workshops, 2021, 392-392. [4] POKHREL, BRIK M, KUMAR, et al. Electronic and optical properties of Er-doped Y2O2S phosphors[J]. Journal of Materials Chemistry C, 2015, 3(43): 11486-11496. [5] BURBANO R C D, SHARMA K S, DORENBOS P, et al. Persistent and photostimulated red emission in CaS:Eu2+, Dy3+ nanophosphors[J]. Advanced Optical Materials, 2015, 3(4): 551-557. [6] 隆金桥, 韦金雷, 欧阳思铭, 等. 发光增强的红色荧光粉Li6Zr2O7:Eu3+的微波固相合成[J]. 精细化工, 2019, 36(5): 807-812. LONG J Q, WEI J L, OUYANG S M, et al. Microwave solid phase synthesis of a red-emitting phosphor Li6Zr2O7:Eu3+ with luminescence enhancement[J]. Fine Chemicals, 2019, 36(5): 807-812 (in Chinese). [7] SUN Q, WANG S Y, DEVAKUMAR B, et al. Novel far-red-emitting SrGdAlO4:Mn4+ phosphors with excellent responsiveness to phytochrome PFR for plant growth lighting[J]. RSC Advances, 2018, 8(69): 39307-39313. [8] WANG X M, ZHAO Z, DENG M, et al. Color-tunable luminescence performance of single-component Na5Y(MoO4)4:Dy3+, Tm3+ white-emitting phosphor for white light-emitting diodes[J]. Ceramics International, 2022, 48(16): 22869-22876. [9] SARAKOVSKIS A, KRIEKE G, DOKE G, et al. Comprehensive study on different crystal field environments in highly efficient NaLaF4:Er3+ upconversion phosphor[J]. Optical Materials, 2015, 39: 90-96. [10] RIVERA-ENRÍQUEZ C E, FERNÁNDEZ-OSORIO A L. Synthesis of YVO4:Eu3+ nanophosphors by the chemical coprecipitation method at room temperature[J]. Journal of Luminescence, 2021, 236: 118110. [11] 刘 月, 范浩爽, 孟宪国, 等. CaSrSiO4:Sm3+,Eu3+红色荧光粉的发光性能和能量传递研究[J/OL]. 材料科学与工艺, 2023: 1-12. (2023-11-29). https://kns.cnki.net/kcms/detail/23.1345.TB.20231128.1705.004.html. LIU Y, FAN H S, MENG X G, et al. Luminescent properties and energy transfer of CaSrSiO4:Sm3+, Eu3+ red phosphors[J/OL]. Materials Science and Technology, 2023: 1-12. (2023-11-29). https://kns.cnki.net/kcms/detail/23.1345.TB.20231128.1705.004.html (in Chinese). [12] 那 莹, 陈巧玲, 孙 硕, 等. Ca3(PO4)2:Dy3+纳米荧光粉的制备及发光性能研究[J]. 人工晶体学报, 2018, 47(7): 1335-1339. NA Y, CHEN Q L, SUN S, et al. Preparation and study on luminescent properties of Ca3(PO4)2:Dy3+ nano-phosphors[J]. Journal of Synthetic Crystals, 2018, 47(7): 1335-1339 (in Chinese). [13] LIN Y F, HE D M, JIANG K Z, et al. A novel red-emitting K5La(MoO4)4:Eu3+ phosphor with a high quantum efficiency for w-LEDs and visualization of latent fingerprints[J]. Journal of Alloys and Compounds, 2023, 960: 170563. [14] HARRISON E D, HUMMEL A F. The calcium-silicate-tungstate phosphor: phase relationships and fluorescent properties[J]. Journal of The Electrochemical Society, 2019, 105(1): 34. [15] WANG H, LI Y M, NING Z L, et al. A novel red phosphor LixNa1-xEu(WO4)2 solid solution: influences of Li/Na ratio on the microstructures and luminescence properties[J]. Journal of Luminescence, 2018, 201: 364-371. [16] ZHANG Y N, ZHU J P, ZOU H, et al. Effect of lattice distortion on thermal conduction behavior in a novel high-entropy rare-earth tantalates[J]. Journal of Alloys and Compounds, 2024, 976: 172942. [17] XIAO J G, ZHANG W T, WANG T S, et al. Photoluminescence enhancement in a Na5Y(MoO4)4:Dy3+ white-emitting phosphor by partial replacement of MoO2-4 with WO2-4 or VO3-4[J]. Ceramics International, 2021, 47(9): 12028-12037. [18] DHANYA J, KALATHIL SURESH E, NAVEENRAJ R, et al. Synthesis and characterization of Na5M(MoO4)4 (M=Y, Yb) microwave ceramics for ULTCC applications[J]. Ceramics International, 2018, 44(6): 6699-6704. [19] 胡志朋, 付乔克, 陈振强. Sm3+:Na5Y(MoO4)4材料的多晶合成与性能表征[J]. 人工晶体学报, 2011, 40(6): 1414-1417. HU Z P, FU Q K, CHEN Z Q. Polycrystal synthesis and performance characterization of Sm3+:Na5Y(MoO4)4 material[J]. Journal of Synthetic Crystals, 2011, 40(6): 1414-1417 (in Chinese). [20] XIONG F B, CHEN H, LIN H F, et al. Photoluminescence characteristics of Sm3+-doped LnBWO6 (Ln=La, Gd and Y) as new orange-red phosphors[J]. Journal of Luminescence, 2019, 209: 89-94. [21] SONG Y Y, GUO N, LI J, et al. Photoluminescence and temperature sensing of lanthanide Eu3+ and transition metal Mn4+ dual-doped antimoniate phosphor through site-beneficial occupation[J]. Ceramics International, 2020, 46(14): 22164-22170. [22] NAZEMNEZHAD R, MEHRIANPOOR R, JANDAGHIAN A A. Internal resonances of nanorods in presence of surface energy effect: nonlinear torsional vibration[J]. Mathematics and Mechanics of Solids, 2023, 28(3): 833-853. [23] WEI H X, ZHANG R, HUANG G Y, et al. Interfacial charge transfer study of hexacarbonitrile-based intermediate connecter in blue tandem organic light-emitting diodes[J]. Optical Materials, 2022, 128: 112345. [24] GENG X, XIE Y, CHEN S S, et al. Enhanced local symmetry achieved zero-thermal-quenching luminescence characteristic in the Ca2InSbO6:Sm3+ phosphors for w-LEDs[J]. Chemical Engineering Journal, 2021, 410: 128396. [25] WANG X M, WANG Y Y, QIU Z L, et al. Effect of Y3+-O-2 partial substitution with Ca2+-F- on the luminescence enhancement of Y2Mo3O12:Sm3+ red-emitting phosphors[J]. Ceramics International, 2021, 47(20): 28942-28950. [26] OMAGARI S, NAKANISHI T, HIRAI Y, et al. Origin of concentration quenching in ytterbium coordination polymers: phonon-assisted energy transfer[J]. European Journal of Inorganic Chemistry, 2018, 2018(5): 561-567. [27] BLASSE G. Energy transfer in oxidic phosphors[J]. Physics Letters A, 1968, 28(6): 444-445. [28] DEXTER D L. A theory of sensitized luminescence in solids[J]. The Journal of Chemical Physics, 1953, 21(5): 836-850. [29] KIM T. Thermopower distribution of single molecule junctions with different interaction types[J]. Journal of the Korean Physical Society, 2015, 67(9): 1553-1557. [30] 林易展, 杨伟斌, 李浩来, 等. 新型Na5Y(MoO4)4:Eu3+红色荧光粉的制备和发光性能研究[J]. 材料科学与工艺, 2023, 31(2): 69-75+82. LIN Y Z, YANG W B, LI H L, et al. Preparation and luminescence properties of a new Na5Y(MoO4)4:Eu3+ red phosphor[J]. Materials Science and Technology, 2023, 31(2): 69-75+82 (in Chinese). [31] GUPTA B K, HARANATH D, SAINI S, et al. Synthesis and characterization of ultra-fine Y2O3:Eu3+ nanophosphors for luminescent security ink applications[J]. Nanotechnology, 2010, 21(5): 055607. [32] LIU Z P, ZHANG W, XIE W, et al. Synthesis and luminescent properties of Na5(La, Y) (MoO4)4:Sm3+ phosphors for solid-state lighting application[J]. Journal of Luminescence, 2023, 263: 120136. [33] ARRHENIUS S. Über die dissociationswärme und den einfluss der temperatur auf den dissociationsgrad der elektrolyte[J]. Zeitschrift Für Physikalische Chemie, 1889, 4U(1): 96-116. [34] YANG Z F, XU D H, SUN J Y. Synthesis and luminescence properties of Ba3Lu(PO4)3:Sm3+ phosphor for white light-emitting diodes[J]. Optics Express, 2017, 25(8): A391. [35] GUO Q F, ZHAO C L, LIAO L B, et al. Luminescence investigations of novel orange-red fluorapatite KLaSr3(PO4)3F:Sm3+ phosphors with high thermal stability[J]. Journal of the American Ceramic Society, 2017, 100(5): 2221-2231. [36] ZHANG A Q, SUN Z, JIA M C, et al. Sm3+-doped niobate orange-red phosphors with a double-perovskite structure for plant cultivation and temperature sensing[J]. Journal of Alloys and Compounds, 2021, 889: 161671. [37] LI L P, QIN F, ZHOU Y, et al. Influence of the multiphonon non-radiative relaxation on the luminescence ratiometric thermometry[J]. Journal of Physics D: Applied Physics, 2018, 51(24): 245103. [38] MCCAMY C S. Correlated color temperature as an explicit function of chromaticity coordinates[J]. Color Research & Application, 1992, 17(2): 142-144. [39] LIANG Z B, YANG Z F, XIE X L, et al. Electronic and optical properties of a novel fluoroaluminate red phosphor Cs2NaAl3F12:Mn4+ with high color purity for white light-emitting diodes[J]. Dalton Transactions, 2019, 48(33): 12459-12465. |