[1] VITIELLO M S, SCALARI G, WILLIAMS B, et al. Quantum cascade lasers: 20 years of challenges. Optics Express, 2015, 23(4): 5167-5182. [2] RUAN P, CHAI Y, LIU C L, et al. Repetitively pulsed non-chain DF laser with pulse repetition frequency up to 50 Hz. Optik, 2019, 181: 732-737. [3] 黄 超, 黄 珂, 易爱平, 等. 100 Hz重复频率脉冲中红外HF化学激光器[J]. 中国激光, 2019, 46(2): 0201002. HUANG C, HUANG K, YI A P, et al. A mid-infrared pulsed HF chemical laser with 100 Hz repetition rate[J]. Chinese Journal of Lasers, 2019, 46(2): 0201002 (in Chinese). [4] YU L P, ZENG Q H, WANG S, et al. Mid-infrared ultrashort pulses generated from a hybrid mode-locked Er∶ZBLAN fiber laser[J]. Optics Express, 2023, 31(2): 2261-2269. [5] WANG F F, LI J T, SUN X H, et al. High-power and high-efficiency 4.3 μm ZGP-OPO[J]. Chinese Optics Letters, 2022, 20(1): 011403. [6] 陈邱笛, 郑为比, 张沛雄, 等. 基于新型Nd∶Gd0.1Y0.9AlO3晶体的540 nm倍频绿光激光器[J]. 发光学报, 2023, 44(8): 1463-1470. CHEN Q D, ZHENG W B, ZHANG P X, et al. 540 nm frequency-doubled green laser realized by a novel Nd∶Gd0.1Y0.9AlO3 crystal[J]. Chinese journal of luminescence, 2023, 44(8): 1463-1470 (in Chinese). [7] CHEN Y, TAN J C, ZHANG P X, et al. Influence of Nd3+ concentration on mid-infrared emission in PbF2 crystal co-doped with Ho3+ and Nd3+ ions[J]. Journal of Rare Earths, 2024, 42(3): 479-487. [8] 李 琳, 谭慧瑜, 郑为比, 等. Er掺杂CGA晶体的生长及浓度优化研究[J]. 人工晶体学报, 2023, 52(7): 1325-1334. LI L, TAN H Y, ZHENG W B, et al. Growth and concentration optimization of Er-doped CGA crystals[J]. Journal of Synthetic Crystals, 2023, 52(7): 1325-1334 (in Chinese). [9] 廖家裕, 陈鸿玲, 牛晓晨, 等. 新型中红外激光晶体Er3+/Ho3+/Eu3+∶PbF2的生长和性能[J]. 发光学报, 2021, 42(12): 1852-1862. LIAO J Y, CHEN H L, NIU X C, et al. Growth and properties of novel mid-infrared laser crystal Er3+/Ho3+/Eu3+∶PbF2[J]. Chinese Journal of Luminescence, 2021, 42(12): 1852-1862 (in Chinese). [10] WU Z C, JIN G Y, TAN X C, et al. Design of Er∶YAG laser blood-sampling device[C]//SPIE Proceedings, International Symposium on Photoelectronic Detection and Imaging 2009: Laser Sensing and Imaging. Beijing, China. SPIE, 2009: 706-711. [11] RAUCCI-NETO W, PÉCORA J D, PALMA-DIBB R G. Thermal effects and morphological aspects of human dentin surface irradiated with different frequencies of Er∶YAG laser[J]. Microscopy Research and Technique, 2012, 75(10): 1370-1375. [12] LIN K L, CHOU S H, LONG C Y. Effect of Er∶YAG laser for women with stress urinary incontinence[J]. BioMed Research International, 2019, 2019: 7915813. [13] ROBATI R M, HAMEDANI B, NAMAZI N, et al. Efficacy of microneedling versus fractional Er∶YAG laser in facial rejuvenation[J]. Journal of Cosmetic Dermatology, 2020, 19(6): 1333-1340. [14] WALSH J T Jr, FLOTTE T J, DEUTSCH T F. Er∶YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage[J]. Lasers in Surgery and Medicine, 1989, 9(4): 314-326. [15] OZOLINSH M, STOCK K, HIBST R, et al. Q-switching of Er∶YAG (2.9 μm) solid-state laser by PLZT electrooptic modulator[J]. IEEE Journal of Quantum Electronics, 1997, 33(10): 1846-1849. [16] VORONOV A A, KOZLOVSKII V I, KOROSTELIN Y V, et al. Passive Fe2+∶ZnSe single-crystal Q switch for 3-μm lasers[J]. Quantum Electronics, 2006, 36(1): 1-2. [17] 马明俊,叶 兵, 麻晓敏. 2.94 μm Er∶YAG电光调Q激光器及应用研究[J]. 量子电子学报, 2010, 27(6): 688-692. MA J M, YE B, MA X M. Electro-optically Q-switched 2.94 μm Er∶YAG laser and its applications[J]. Chinese Journal of Quantum Electronics, 2010, 27(6): 688-692 (in Chinese). [18] KARKI K, SUBEDI S D, MARTYSHKIN D, et al. Recent progress in mechanically Q-switched 2.94 um Er∶YAG-promising pump source for 4-um room temperature Fe∶ZnSe lasers[C]//Solid State Lasers XXIX: Technology and Devices. February 1-6, 2020. San Francisco, USA. SPIE, 2020: 217-223. [19] 王滔宁, 姜玲玲, 程庭清, 等. 2.94 μm LiNbO3声光调Q Er∶YAG激光输出脉冲特性[J]. 物理学报, 2024, 73(4): 044205. WANG T N, JIANG L L, CHENG T Q. LiNbO3 acousto-optically Q-switched pulse characteristics of Er∶YAG laser at 2.94 μm[J]. Chinese Journal Physics, 2024, 73(4): 044205 (in Chinese). [20] KAWASE H, UEHARA H, YASUHARA R. Passively Q-switched Er∶YAP single crystal laser at 2.92 μm using graphene saturable absorber[C]//2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). Munich, Germany. IEEE, 2019: 1. [21] LI J F, LUO H Y, WANG L L, et al. 3-μm Mid-infrared pulse generation using topological insulator as the saturable absorber[J]. Optics Letters, 2015, 40(15): 3659-3662. [22] LI C, YANG Q, ZU Y Q, et al. SnS2 as a saturable absorber for mid-infrared Q-switched Er∶SrF2 laser[J]. Nanomaterials, 2023, 13(13): 1989. [23] 洪 弘, 周 貌, 陈鸿玲, 等. 基于锑烯纳米片的被动调Q激光器[J]. 人工晶体学报, 2022, 51(2): 216-221. HONG H, ZHOU M, CHEN H L, et al. Passively Q-switched laser based on antimonene nanosheets[J]. Journal of Synthetic Crystals, 2022, 51(2): 216-221 (in Chinese). [24] LI C, LIU J, JIANG S Z, et al. 28 μm passively Q-switched Er∶CaF2 diode-pumped laser[J]. Optical Materials Express, 2016, 6(5): 1570. [25] NIE H K, ZHANG P X, ZHANG B T, et al. Diode-end-pumped Ho, Pr∶LiLuF4 bulk laser at 2.95 μm[J]. Optics Letters, 2017, 42(4): 699-702. [26] YOU Z Y, WANG Y, SUN Y J, et al. CW and Q-switched GGG/Er∶Pr∶GGG/GGG composite crystal laser at 2.7 μm[J]. Laser Physics Letters, 2017, 14(4): 045810. [27] KAWASE H, UEHARA H, CHEN H J, et al. Passively Q-switched 2.9 μm Er∶YAP single crystal laser using graphene saturable absorber[J]. Applied Physics Express, 2019, 12(10): 102006. [28] 孙政达. Er, Pr∶YLF、Er∶LLF和Er∶YAP晶体2.7 μm波段激光特性研究[D]. 济南: 山东大学, 2021. SUN Z D. Study on 2.7 μM band laser characteristics of Er, Pr∶YLF, Er∶LLF and Er∶YAP crystal[D].Jinan: Shandong University, 2021 (in Chinese). [29] OU Z N, WANG X Y, ZHU B H, et al. Enhancement of mid-infrared saturable absorption of graphene by compositing with PbSe for ultra-short pulse lasers in the 2.8 to 4 μm band[J]. Infrared Physics & Technology, 2024, 136: 105056. [30] ZAVARTSEV Y D, ZAGUMENNYI A I, KULEVSKII L A, et al. Q-switching in a Cr3+∶Yb3+∶Ho3+∶YSGG Crystal Laser Based on the 5I6-5I7 (λ=2.92 μm) Transition[J]. Quantum Electronics, 1999, 29(4): 295. [31] MANAWI Y M, IHSANULLAH, SAMARA A, et al. A review of carbon nanomaterials′ synthesis via the chemical vapor deposition (CVD) method[J]. Materials, 2018, 11(5): 822. [32] GUAN X F, ZHAN L J, ZHU Z W, et al. Continuous-wave and chemical vapor deposition graphene-based passively Q-switched Er∶Y2O3 ceramic lasers at 2.7 μm[J]. Applied Optics, 2018, 57(3): 371-376. |