[1] SCOTT J F. Applications of modern ferroelectrics[J]. Science, 2007, 315(5814): 954-959. [2] 戚佳斌, 谢欣瑜, 李忠贤. 柔性无机铁电薄膜的制备及其在存储器领域应用研究进展[J]. 人工晶体学报, 2023, 52(3): 380-393. QI J B, XIE X Y, LEE Z X. Research progress on preparation of flexible inorganic ferroelectric thin film and its application in memory field[J]. Journal of Synthetic Crystals, 2023, 52(3): 380-393 (in Chinese). [3] 刘 迪, 王 静, 王俊升, 等. 相场模拟应变调控PbZr(1-x)TixO3薄膜微观畴结构和宏观铁电性能[J]. 物理学报, 2020, 69(12): 127801. LIU D, WANG J, WANG J S, et al. Phase field simulation of epitaxial strain manipulating domain structure and ferroelectric properties in PbZr(1-x)TixO3 thin films[J]. Acta Physica Sinica, 2020, 69(12): 127801 (in Chinese). [4] XI S, SU Y. A phase field study of the grain-size effect on the thermomechanical behavior of polycrystalline NiTi thin films[J]. Acta Mechanica, 2021, 232(11): 4545-4566. [5] YANG S M, JO J Y, KIM T H, et al. Ac dynamics of ferroelectric domains from an investigation of the frequency dependence of hysteresis loops[J]. Physical Review B, 2010, 82(17): 174125. [6] CHEN X, DONG X, CAO F, et al. Field and frequency dependence of the dynamic hysteresis in lead zirconate titanate solid solutions [J]. Journal of the American Ceramic Society, 2014, 97(1): 213-219. [7] HOSSAIN M E, LIU S, O'BRIEN S, LI J. Frequency-dependent ferroelectric behavior of BaMn3Ti4O14.25 at room temperature[J]. Applied Physics Letters, 2015, 107(3): 032904. [8] MAI M, LESCHHORN A, KLIEM H. The field and temperature dependence of hysteresis loops in P(VDF-TrFE) copolymer films[J]. Physica B: Condensed Matter, 2015, 456: 306-311. [9] SU Y, KANG H, WANG Y, et al. Intrinsic versus extrinsic effects of the grain boundary on the properties of ferroelectric nanoceramics[J]. Physical Review B, 2017, 95(5): 054121. [10] PERTSEV N A, ZEMBILGOTOV A G, TAGANTSEV A K. Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films[J]. Physical review letters, 1998, 80(9): 1988-1991. [11] PERTSEV N A, ZEMBILGOTOV A G. Domain populations in epitaxial ferroelectric thin films: theoretical calculations and comparison with experiment[J]. Journal of Applied Physics, 1996, 80(11): 6401-6406. [12] 李 强, 张培芝, 吕锦彬, 等. (111)取向0.7PMN-0.3PT薄膜机电耦合性能[J]. 人工晶体学报, 2022, 51(1): 112-119. LI Q, ZHANG P Z, LV J B, et al. Electromechanical coupling performance of (111)-oriented 0.7PMN-0.3PT thin film[J]. Journal of Synthetic Crystals, 2022, 51(1): 112-119 (in Chinese). [13] LI Y L, HU S Y, LIU Z K, et al. Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films[J]. Acta Materialia, 2002, 50(2): 395-411. [14] GUO L, JIANG L, ZHOU Y. Impact of interface misfit strain on the movement and tilt angles of the domain wall in ferroelectric thin films[J]. International Journal of Modern Physics B, 2016, 30(24): 1650173. [15] CHOUDHURY S, LI Y L, CHEN L Q, et al. Strain effect on coercive field of epitaxial Barium titanate thin films[J]. Applied Physics Letters, 2008, 92(14). [16] 岳文锋, 俞 亮, 郭全胜, 等. 多铁性材料的应变调控[J]. 人工晶体学报, 2022, 51(1): 154-169. YUE W F, YU L, GUO Q S, et al. Strain tuning of multiferroic materials[J]. Journal of Synthetic Crystals, 2022, 51(1): 154-169 (in Chinese). [17] 夏雨虹, 杨振清, 周露露, 等. 新型热电材料Y2Te3热电性能应变调控研究[J]. 人工晶体学报, 2023, 52(8): 1422-1431. XIA Y H, YANG Z Q, ZHOU L L, et al. Thermoelectric properties of the novel thermoelectric material Y2Te3 through strain modulation[J]. Journal of Synthetic Crystals, 2023, 52(8): 1422-1431 (in Chinese). [18] CAHN J, ALLEN S. A microscopic theory for domain wall motion and its experimental verification in Fe-Al alloy domain growth kinetics[J]. Le Journal de Physique Colloques, 1977, 38(C7): C7-51-C7-54. [19] ZHANG M R, SU Y. The frequency-dependent polarization switching in nanograined BaTiO3 films under high-strength electric field[J]. International Journal of Smart and Nano Materials, 2023, 14(2): 155-169. [20] ZHANG M R, SU Y. The negative dielectric permittivity of polycrystalline barium titanate nanofilms under high-strength kHz-AC fields[J]. International Journal of Solids and Structures, 2022, 254: 111939. [21] ZHOU Y G, PENG J L, PAN K, et al. An unconventional phase field modeling of domains formation and evolution in tetragonal ferroelectrics[J]. Science China Technological Sciences, 2016, 59: 1059-1064. [22] CHEN W, LIU J, MA L, et al. Mechanical switching of ferroelectric domains beyond flexoelectricity[J]. Journal of Mechanics Physics of Solids, 2018, 111: 43-66. [23] YU H, WANG J, KOZINOV S, et al. Phase field analysis of crack tip parameters in ferroelectric polycrystals under large-scale switching[J]. Acta Materialia, 2018, 154: 334-342. [24] NI Y, KHACHATURYAN A G. Giant anhysteretic response of ferroelectric solid solutions with morphotropic boundaries: the role of polar anisotropy[J]. Acta Mechanica Solida Sinica, 2012, 25(4): 429-440. [25] LEVANYUK A P, BURC MISIRLIOGLU I, BARIS OKATAN M. Landau, Ginzburg, Devonshire and others[J]. Ferroelectrics, 2020, 569(1): 310-323. [26] SU Y, LANDIS C M. Continuum thermodynamics of ferroelectric domain evolution: theory, finite element implementation, and application to domain wall pinning[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(2): 280-305. [27] WANG J, CHEN Z, SHIMADA T, et al. Unusual domain evolution in semiconducting ferroelectrics: a phase field study[J]. Physics Letters A, 2013, 377(25-27): 1643-1648. [28] FRIED E, GURTIN M E. Continuum theory of thermally induced phase transitions based on an order parameter[J]. Physica D: Nonlinear Phenomena, 1993, 68(3-4): 326-343. [29] FRIED E, GURTIN M E. Dynamic solid-solid transitions with phase characterized by an order parameter[J]. Physica D: Nonlinear Phenomena, 1994, 72(4): 287-308. [30] GURTIN M E. Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance[J]. Physica D, 1996, 92(3-4): 178-192. [31] HONG L, SOH A K, SONG Y C, et al. Interface and surface effects on ferroelectric nano-thin films[J]. Acta Materialia, 2008, 56(13): 2966-2974. [32] WANG Y L, WANG X Y, CHU L Z, et al. Simulation of the initial polarization curves and hysteresis loops for ferroelectric films by an extensive time-dependent Ginzburg-Landau model[J]. Journal of Materials Science, 2011, 46(8): 2695-2699. [33] HOSSAIN M E, LIU S Y, O’BRIEN S, et al. Frequency-dependent ferroelectric behavior of BaMn3Ti4O14.25 at room temperature[J]. Applied Physics Letters, 2015, 107(3). [34] LIU J M, YU L C, YUAN G L, et al. Dynamic hysteresis of ferroelectric Pb(Zr0. 52Ti0. 48)O3 thin films[J]. Microelectronic engineering, 2003, 66(1-4): 798-805. [35] LIU J M, PAN B, YU H, et al. Dynamic hysteresis dispersion scaling of ferroelectric Nd-substituted Bi4Ti3O12 thin films[J]. Journal of Physics: Condensed Matter, 2004, 16(8): 1189. [36] PAN B, YU H, WU D, et al. Dynamic response and hysteresis dispersion scaling of ferroelectric SrBi2Ta2O9 thin films[J]. Applied Physics Letters, 2003, 83(7): 1406-1408. [37] GARCIA V, FUSIL S, BOUZEHOUANE K, et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states[J]. Nature, 2009, 460: 81-84. [38] WEN Z, QIU X, LI C, et al. Mechanical switching of ferroelectric polarization in ultrathin BaTiO3 films: the effects of epitaxial strain[J]. Applied Physics Letters, 2014, 104(4). [39] LIU Y, WEI J, LOU X, et al. Influence of epitaxial strain on elastocaloric effect in ferroelectric thin films[J]. Applied Physics Letters, 2015, 106(3): 032901. [40] CHOI K J, BIEGALSKI M, LI Y, et al. Enhancement of ferroelectricity in strained BaTiO3 thin films[J]. Science, 2004, 306(5698): 1005-1009. [41] SANG Y L, LIU B, FANG D N. The size and strain effects on the electric-field-induced domain evolution and hysteresis loop in ferroelectric BaTiO3 nanofilms[J]. Computational Materials Science, 2008, 44(2): 404-410. [42] PERTSEV N A, RODRÍGUEZ CONTRERAS J, KUKHAR V G, et al. Coercive field of ultrathin Pb(Zr0.52Ti0.48)O3 epitaxial films[J]. Applied Physics Letters, 2003, 83(16): 3356-3358. [43] FEDELI P, CUNEO F, MAGAGNIN L, et al. On the simulation of the hysteresis loop of polycrystalline PZT thin films[J]. Smart Materials and Structures, 2020, 29(9): 095007. |