[1] ZHANG H, MA X Y, LIN Q L, et al. High-brightness blue InP quantum dot-based electroluminescent devices: the role of shell thickness[J]. The Journal of Physical Chemistry Letters, 2020, 11(3): 960-967. [2] CORREA-BAENA J P, ABATE A, SALIBA M, et al. The rapid evolution of highly efficient perovskite solar cells[J]. Energy & Environmental Science, 2017, 10(3): 710-727. [3] ZHOU W J, SHANG Y Q, GARCÍA DE ARQUER F P, et al. Solution-processed upconversion photodetectors based on quantum dots[J]. Nature Electronics, 2020, 3: 251-258. [4] LIU Y, ZHENG Y H, ZHU Y B, et al. Unclonable perovskite fluorescent dots with fingerprint pattern for multilevel anticounterfeiting[J]. ACS Applied Materials & Interfaces, 2020, 12(35): 39649-39656. [5] KIM T, KIM K H, KIM S, et al. Efficient and stable blue quantum dot light-emitting diode[J]. Nature, 2020, 586: 385-389. [6] LIU G Y, ZHANG S, XU L L, et al. Recent advances of eco-friendly quantum dots light-emitting diodes for display[J]. Progress in Quantum Electronics, 2022, 86: 100415. [7] COLVIN V L, SCHLAMP M C, ALIVISATOS A P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer[J]. Nature, 1994, 370: 354-357. [8] CHENG Y, WAN H Y, LIANG T Y, et al. Continuously graded quantum dots: synthesis, applications in quantum dot light-emitting diodes, and perspectives[J]. The Journal of Physical Chemistry Letters, 2021, 12(25): 5967-5978. [9] LEE T, KIM B J, LEE H, et al. Bright and stable quantum dot light-emitting diodes[J]. Advanced Materials, 2022, 34(4): 2106276. [10] CHEN O, ZHAO J, CHAUHAN V P, et al. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking[J]. Nature Materials, 2013, 12: 445-451. [11] SHEN H B, BAI X W, WANG A Q, et al. High-efficient deep-blue light-emitting diodes by using high quality ZnxCd1-xS/ZnS core/shell quantum dots[J]. Advanced Functional Materials, 2014, 24(16): 2367-2373. [12] XIAO Z X, PENG M, MEI Y C, et al. Effect of organosilicone and mineral silicon fertilizers on chemical forms of cadmium and lead in soil and their accumulation in rice[J]. Environmental Pollution, 2021, 283: 117107. [13] KIM D H, KIM T W. Ultrahigh current efficiency of light-emitting devices based on octadecylamine-graphene quantum dots[J]. Nano Energy, 2017, 32: 441-447. [14] KIM J H, YANG H. High-efficiency Cu-In-S quantum-dot-light-emitting device exceeding 7%[J]. Chemistry of Materials, 2016, 28(17): 6329-6335. [15] WU Z H, LIU P, ZHANG W D, et al. Development of InP quantum dot-based light-emitting diodes[J]. ACS Energy Letters, 2020, 5(4): 1095-1106. [16] CHAO W C, CHIANG T H, LIU Y C, et al. High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility[J]. Communications Materials, 2021, 2: 96. [17] LI H Y, BIAN Y Y, ZHANG W J, et al. High performance InP-based quantum dot light-emitting diodes via the suppression of field-enhanced electron delocalization[J]. Advanced Functional Materials, 2022, 32(38): 2204529. [18] MEI G D, TAN Y Z, SUN J Y, et al. Light extraction employing optical tunneling in blue InP quantum dot light-emitting diodes[J]. Applied Physics Letters, 2022, 120(9): 091101. [19] JANG E P, HAN C Y, LIM S W, et al. Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters[J]. ACS Applied Materials & Interfaces, 2019, 11(49): 46062-46069. [20] PARK S, SON C, KANG S, et al. Development of highly efficient blue-emitting ZnSexTe1-x/ZnSe/ZnS quantum dots and their electroluminescence application[J]. Journal of Industrial and Engineering Chemistry, 2020, 88: 348-355. [21] LEE S H, SONG S W, YOON S Y, et al. Heterostructural tailoring of blue ZnSeTe quantum dots toward high-color purity and high-efficiency electroluminescence[J]. Chemical Engineering Journal, 2022, 429: 132464. [22] 贾汉林, 伍仕停, 方佳庆, 等. 纯蓝光ZnSe基核/壳结构量子点的合成与发光性能[J]. 微纳电子技术, 2023, 60(11): 1774-1783. JIA H L, WU S T, FANG J Q, et al. Synthesis and luminescent properties of pure-blue light-emitting ZnSe based core/shell quantum dots[J]. Micronanoelectronic Technology, 2023, 60(11): 1774-1783 (in Chinese). [23] HUANG Z G, SUN Q, ZHAO S Y, et al. Deciphering ultrafast carrier dynamics of eco-friendly ZnSeTe-based quantum dots: toward high-quality blue-green emitters[J]. The Journal of Physical Chemistry Letters, 2021, 12(49): 11931-11938. [24] HAN C Y, LEE S H, SONG S W, et al. More than 9% efficient ZnSeTe quantum dot-based blue electroluminescent devices[J]. ACS Energy Letters, 2020, 5(5): 1568-1576. [25] JUNG W H, YOO J Y, KIM H J, et al. Fabrication of highly efficient pure blue-emitting electroluminescent devices using ZnSe/ZnSexS1-x/ZnS QDs[J]. Optical Materials Express, 2020, 10(12): 3372. [26] YOO J Y, CHOI Y J, KIM J G. Synthesis of narrow blue emission gradient ZnSeS quantum dots and their quantum dot light-emitting diode device performance[J]. Journal of Luminescence, 2021, 240: 118415. [27] JIN X D, YUN Z K, ZHAI G M, et al. ZnO/silica quasi core/shell nanoparticles as electron transport materials for high-performance quantum-dot light-emitting diodes[J]. Ceramics International, 2023, 49(13): 22304-22312. [28] ZHANG C F, ZHAI G M, ZHANG Y, et al. Enhanced device performance and stability of perovskite solar cells with low-temperature ZnO/TiO2 bilayered electron transport layers[J]. RSC Advances, 2018, 8(41): 23019-23026. [29] XIE R G, KOLB U, LI J X, et al. Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals[J]. Journal of the American Chemical Society, 2005, 127(20): 7480-7488. [30] YU R, YIN F, PU C, et al. On the electroluminescence overshoot of quantum-dot light-emitting diodes[J]. Optics Letters, 2023, 48(11): 3059-3062. [31] ZHENG L, ZHAI G, ZHANG Y, et al. Solution-processed blue quantum-dot light-emitting diodes based on double hole transport layers: charge injection balance, solvent erosion control and performance improvement [J]. Superlattices and Microstructures, 2020, 140: 106460. [32] CHEN J F, SONG D D, ZHAO S L, et al. Highly efficient all-solution processed blue quantum dot light-emitting diodes based on balanced charge injection achieved by double hole transport layers[J]. Organic Electronics, 2021, 94(4): 106169. [33] CHOI J W, WOO H C, HUANG X G, et al. Organic-inorganic hybrid perovskite quantum dots with high PLQY and enhanced carrier mobility through crystallinity control by solvent engineering and solid-state ligand exchange[J]. Nanoscale, 2018, 10(28): 13356-13367. [34] EMPEDOCLES S A, BAWENDI M G. Quantum-confined stark effect in single CdSe nanocrystallite quantum dots[J]. Science, 1997, 278(5346): 2114-2117. |