[1] REN A B, WANG H, ZHANG W, et al. Emerging light-emitting diodes for next-generation data communications. Nature Electronics, 2021, 4: 559-572. [2] LU Z, SUN D S, LYU Z Y, et al. Novel color tunable LaCaGaO4∶Bi3+, Eu3+ phosphors for high color rendering warm white LEDs. Journal of the American Ceramic Society, 2023, 106(11): 6617-6629. [3] DAI P P, CAO J, ZHANG X T, et al. Bright and high-color-rendering white light-emitting diode using color-tunable oxychloride and oxyfluoride phosphors. The Journal of Physical Chemistry C, 2016, 120(33): 18713-18720. [4] SUN J Y, SUN Y N, JUNHUIZENG, et al. Luminescence properties and energy transfer investigations of Sr3Gd(PO4)3∶Ce3+, Tb3+ phosphors. Journal of Physics and Chemistry of Solids, 2013, 74(7): 1007-1011. [5] LI T, LI P L, WANG Z J, et al. A series of tunable emission phosphors of Sm3+, Eu3+ and Mn2+ doped Ba3Tb(PO4)3: luminescence and energy transfer. RSC Advances, 2015, 5(88): 71735-71742. [6] LV W Z, GUO N, JIA Y C, et al. A potential single-phased emission-tunable silicate phosphor Ca3Si2O7∶Ce3+, Eu2+ excited by ultraviolet light for white light emitting diodes. Optical Materials, 2013, 35(5): 1013-1018. [7] WANG Z J, LI P L, GUO Q L, et al. A single-phased warm white-light-emitting phosphor BaMg2(PO4)2∶Eu2+, Mn2+, Tb3+ for white light emitting diodes. Materials Research Bulletin, 2014, 52: 30-36. [8] HAN X Y, XIN C R, WANG S X, et al. Insight into Eu3+-doped phase-change K3Lu(PO4)2 phosphate toward data encryption. Inorganic Chemistry, 2023, 62(24): 9679-9686. [9] DAI S J, ZHAO D, ZHANG R J, et al. Enhancing luminescence intensity and improving thermostability of red phosphors Li3Ba2La3(WO4)8∶Eu3+ by co-doping with Sm3+ ions. Journal of Alloys and Compounds, 2022, 891: 161973. [10] WANG S Y, SUN Q, DEVAKUMAR B, et al. Novel highly efficient and thermally stable Ca2GdTaO6∶Eu3+ red-emitting phosphors with high color purity for UV/blue-excited WLEDs. Journal of Alloys and Compounds, 2019, 804: 93-99. [11] SHI L Y, ZHAO D, ZHANG R J, et al. Multi-color emitting luminescence in an Eu3+/Tb3+ co-doping borate-phosphate system CsNa2Tb2-x(BO3)(PO4)2∶xEu3+. Journal of Alloys and Compounds, 2021, 877: 160308. [12] PERRELLA R V, MOHAMMEDI R, KUHNER R, et al. Simple postsynthesis thermal treatment toward high luminescence performance of rare earth vanadate nanoparticles. Crystal Growth & Design, 2023, 23(8): 5389-5396. [13] ZHANG Z J, SUN L L, DEVAKUMAR B, et al. Novel highly luminescent double-perovskite Ca2GdSbO6∶Eu3+ red phosphors with high color purity for white LEDs: synthesis, crystal structure, and photoluminescence properties[J]. Journal of Luminescence, 2020, 221: 117105. [14] KING G, GARCIA-MARTIN S. Expanding the doubly cation ordered perovskite family: structural complexity in NaLaInNbO6 and NaLaInTaO6[J]. Inorganic Chemistry, 2019, 58(20): 14058-14067. [15] SHEN J, WANG Z X, ZHOU J, et al. Photoluminescence properties of NUV light excited Ba(Mg1/3Nb2/3)O3∶Eu3+ red phosphor with high color purity[J]. Ceramics International, 2019, 45(9): 11844-11849. [16] JI C Y, HUANG Z, WEN J, et al. Blue-emitting Bi-doped double perovskite Gd2ZnTiO6 phosphor with near-ultraviolet excitation for warm white light-emitting diodes[J]. Journal of Alloys and Compounds, 2019, 788: 1127-1136. [17] LI X B, YANG H J, DING N, et al. Luminescence properties, crystal structure and high thermal stable of (Gd0.85-xLux)2MgTiO6∶Eu3+ red phosphors[J]. Optical Materials Express, 2020, 110: 110526. [18] CAI P Q, QIN L, CHEN C L, et al. Optical thermometry based on vibration sidebands in Y2MgTiO6∶Mn4+ double perovskite[J]. Inorganic Chemistry, 2018, 57(6): 3073-3081. [19] 周 琦, 张王曦月, 蒋小康, 等. Gd2ZnTiO6∶Sm3+荧光粉的制备及发光性能研究[J]. 化工新型材料, 2022, 50(4): 132-136. ZHOU Q, ZHANG W, JIANG X K, et al. Preparation and photoluminescence of Gd2ZnTiO6∶Sm3+ phosphor[J]. New Chemical Materials, 2022, 50(4): 132-136 (in Chinese). [20] LI J Q, LIAO J S, WEN H R, et al. Multiwavelength near infrared downshift and downconversion emission of Tm3+ in double perovskite Y2MgTiO6∶Mn4+/Tm3+ phosphors via resonance energy transfer[J]. Journal of Luminescence, 2019, 213: 356-363. [21] WANG Q F, LIU Y, WANG Y, et al. Considerable photoluminescence enhancement of LiEu(MoO4)2 red phosphors via Bi and/or Si doping for white LEDs[J]. Journal of Alloys and Compounds, 2015, 625: 355-361. [22] DU P, YU J S. Dual-enhancement of photoluminescence and cathodoluminescence in Eu3+-activated SrMoO4 phosphors by Na+ doping[J]. RSC Advances, 2015, 5(74): 60121-60127. [23] DENG H J, GAO Z W, XUE N, et al. A novel Eu3+-doped garnet-type tellurate red-emitting phosphor with high thermal stability and color purity[J]. Journal of Luminescence, 2017, 192: 684-689. [24] LEE S H, CHA Y, KIM H, et al. Luminescent properties of Eu3+-activated Gd2ZnTiO6 double perovskite red-emitting phosphors for white light-emitting diodes and field emission displays[J]. RSC Advances, 2018, 8(20): 11207-11215. [25] BLASSE G. Energy transfer in oxidic phosphors[J]. Physics Letters A, 1968, 28(6): 444-445. [26] DEXTER D L, SCHULMAN J H. Theory of concentration quenching in inorganic phosphors[J]. The Journal of Chemical Physics, 1954, 22(6): 1063-1070. [27] GUAN H X, LIU G X, WANG J X, et al. Multicolor tunable luminescence and paramagnetic properties of NaGdF4∶Tb3+/Sm3+ multifunctional nanomaterials[J]. Dalton Transactions, 2014, 43(28): 10801-10808. [28] ZHAO C L, XIA Z G, YU S X. Thermally stable luminescence and structure evolution of (K, Rb)BaPO4∶Eu2+ solid-solution phosphors[J]. Journal of Materials Chemistry C, 2014, 2(30): 6032-6039. [29] ZHU G, CI Z P, SHI Y R, et al. Synthesis, crystal structure and luminescence characteristics of a novel red phosphor Ca19Mg2(PO4)14∶Eu3+ for light emitting diodes and field emission displays[J]. Journal of Materials Chemistry C, 2013, 1(37): 5960-5969. [30] ZHANG X G, ZHOU C Y, SONG J H, et al. High-brightness and thermal stable Sr3La(PO4)3∶Eu3+ red phosphor for NUV light-emitting diodes[J]. Journal of Alloys and Compounds, 2014, 592: 283-287. |